检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王新杰[1] 雷印杰[1] 严华[1] 乔永钦[2]
机构地区:[1]四川大学电子信息学院,成都610065 [2]郑州机械研究所,郑州450052
出 处:《计算机测量与控制》2015年第12期4133-4138,共6页Computer Measurement &Control
基 金:国家自然科学基金项目(61172181)
摘 要:为降低云计算系统产生的能耗,实现系统多类型资源的合理利用,提出虚拟机多资源能耗优化放置模型,并给出虚拟机多目标资源随机多组优化算法(RMRO);RMRO算法随机生成多组虚拟机放置序列,并对每组序列进行优化,从中选出最优的序列作为最终的虚拟机序列;基于RMRO,进一步提出了3种虚拟机放置序列的再优化策略,通过实验对比,选择MMBA策略作为最佳策略;仿真结果表明,RMRO相比传统的MBFD和MBFH算法,能明显降低数据中心的能耗,同时使系统多种资源利用更合理。To reduce the enormous energy produced by the cloud computing system and achieve reasonable utilization of a variety of re- sources, a virtual machine placing model with multi--resource energy consumption optimization is built and a virtual machine placement algo- rithm-multi-object resources random multiple sets re--optimization algorithm (RMRO) is proposed. In RMRO, the multi--group se- quences of the virtual machine is randomly generated, and after each sequence is optimized , the optimal sequence is selected from the opti mized multi--group sequences. Based on RMRO, to optimize the virtual machine allocation sequence , three kinds of policy is proposed. Through the experimental comparison , MMBA is selected as the optimal strategy. Compared to the traditional algorithms which include MBFD and MBFH , RMRO can significantly reduce energy consumption, and make a variety of resources more reasonable in the cloud corn puting system.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.64.102