基于热力学混合遗传算法的加热炉炉温优化研究  被引量:2

Heat furnace temperature optimal problem based on hybrid genetic algorithm

在线阅读下载全文

作  者:吴晓燕[1] 

机构地区:[1]四川文理学院计算机学院,四川达州635000

出  处:《重庆邮电大学学报(自然科学版)》2015年第6期819-825,843,共8页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)

基  金:四川省科技厅一般项目(14ZB0315)~~

摘  要:针对加热炉生产过程中钢坯入炉温度、规格尺寸、钢坯种类等生产工况经常会发生改变,导致基本遗传算法存在早熟等现象,提出一种基于热力学的混合遗传算法。基于钢坯加热过程的机理模型,建立了钢坯温度预报模型,依据加热炉工艺生产要求,建立了加热炉炉温优化模型。为了提高遗传算法的求解精度和计算效率,在遗传算法交叉算子设计过程中加入内能、熵和自由能的思想,改进了传统遗传算法;同时在经典的遗传算法基础上加入模拟退火算法构成了基于热力学的混合遗传算法,并用于求解加热炉炉温优化问题,克服了传统遗传算法的不足。实验结果表明,该方法能够有效地求解加热炉炉温优化问题,是可行的、有效的。In view of the initial temperature,billet size,species and other production conditions changing,the basic genetic algorithm has premature phenomenon. A hybrid genetic algorithm which is based on the thermodynamic is proposed.Based on billet heating mechanism,a slab temperature prediction model is established. Then,according to the furnace production process,a temperature optimal model is established. In order to improve solution accuracy and computational efficiency,a crossover process in genetic algorithm is enclosed by internal energy,entropy and free energy of thought,to improve the traditional genetic algorithm. While a classical simulated annealing algorithm is combined with genetic algorithm,a hybrid genetic algorithm is used to solve the heating furnace temperature thermodynamic optimization problems,which can overcome the shortcomings of the traditional method. Experimental result shows that this method can effectively solve the heating furnace temperature optimization problems,so this method is feasible and effective.

关 键 词:加热炉 混合遗传算法 优化 温度预报模型 热力学 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象