检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学信息科学技术学院,安徽合肥230061
出 处:《红外与激光工程》2015年第12期3825-3830,共6页Infrared and Laser Engineering
基 金:国家自然科学基金(61172157)
摘 要:分布式压缩感知是用尽可能少线性测量值来表示一个联合稀疏信号。分布式压缩感知联合重构算法是以信号集中的某个信号为边信息,根据信号集中信号之间的相关关系来重构信号的算法。为了解决已有重构算法的复杂性以及减少重构算法所需的测量值数,提出了两种新的分布式压缩感知联合重构算法。对提出的两种新算法在信号和图像处理上进行了实验,验证了其可行性与先进性。结果表示,这两种联合重建算法在获取相同的图像质量时需要测量值更少。Distributed compressed sensing is concerned with representing an enseml:le of jointly sparse signals using as few linear measurements as possible. Joint reconstruction algorithm for distributed compressed perception was based on the idea of using one of the signals as side information, and then reconstruct other signals by the correlation between the side information and other signals. To resolve the complexity of reconstruction algorithms and reduce the measurements, two novel joint reconstruction algorithms for distributed compressed sensing based on joint sparse models were presented in this paper. Its application in signals and images processing was presented which are on the basis of demonstrating its feasibility. The result represent that the two novel joint reconstruction algorithms need fewer measurements for getting the same quality.
分 类 号:TN919.85[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7