Transgenic Arabidopsis thaliana expressing a wheat oxalate oxidase exhibits hydrogen peroxide related defense response  被引量:2

Transgenic Arabidopsis thaliana expressing a wheat oxalate oxidase exhibits hydrogen peroxide related defense response

在线阅读下载全文

作  者:WEI Fang HU Jie YANG Yan HAO Zhi-da WU Rui-hua TIAN Bao-ming CAO Gang-qiang ZANG Xin 

机构地区:[1]School of Life Sciences, Zhengzhou University [2]Zhengzhou Key Laboratory of Plant Molecular Breeding [3]Henan Key Laboratory of Bioactive Macromolecules

出  处:《Journal of Integrative Agriculture》2015年第12期2565-2573,共9页农业科学学报(英文版)

基  金:financially supported by the National Key Technology R&D Program of China(2010BAD01B02);the National Natural Science Foundation of China(U1204308);the Education Department of Henan Province,China(13A180437)

摘  要:Oxalic acid(OA) is considered as an important pathogenetic factor of some destructive diseases caused by some fungal pathogens such as Sclerotinia sclerotiorum. Oxalate degradation is important for plant health, and plants that contain oxalate oxidase(OXO) enzymes could breakdown oxalate into CO_2 and H_2O_2, which subsequently evokes defense responses. However, some species, such as Arabidopsis thaliana, have no oxalate oxidase activity identified to date. The present study aims to develop transgenic Arabidopsis expressing a wheat oxalate oxidase, to test for the response to OA exposure and fungal infection by S. sclerotiorum. The results showed that the transgenic Arabidopsis lines that expressed the wheat OXO exhibited enhanced resistance to OA exposure and S. sclerotiorum infection in the tolerance assays. In the same manner, it could convert OA to CO_2 and H_2O_2 to a higher extent than the wild-type. Intensive osmotic adjustments were also detected in the transgenic Arabidopsis lines. The higher level of produced H_2O_2 subsequently induced an elevated activity of antioxidant enzymes including superoxide dismutase(SOD) and peroxidase(POD) in the transgenic Arabidopsis plants. The present study indicated that the expression of a gene encoding wheat OXO could induce intensive osmotic adjustments and hydrogen peroxide related defense response, and subsequently increased tolerance to S. sclerotiorum in transgenic A. thaliana.Oxalic acid(OA) is considered as an important pathogenetic factor of some destructive diseases caused by some fungal pathogens such as Sclerotinia sclerotiorum. Oxalate degradation is important for plant health, and plants that contain oxalate oxidase(OXO) enzymes could breakdown oxalate into CO_2 and H_2O_2, which subsequently evokes defense responses. However, some species, such as Arabidopsis thaliana, have no oxalate oxidase activity identified to date. The present study aims to develop transgenic Arabidopsis expressing a wheat oxalate oxidase, to test for the response to OA exposure and fungal infection by S. sclerotiorum. The results showed that the transgenic Arabidopsis lines that expressed the wheat OXO exhibited enhanced resistance to OA exposure and S. sclerotiorum infection in the tolerance assays. In the same manner, it could convert OA to CO_2 and H_2O_2 to a higher extent than the wild-type. Intensive osmotic adjustments were also detected in the transgenic Arabidopsis lines. The higher level of produced H_2O_2 subsequently induced an elevated activity of antioxidant enzymes including superoxide dismutase(SOD) and peroxidase(POD) in the transgenic Arabidopsis plants. The present study indicated that the expression of a gene encoding wheat OXO could induce intensive osmotic adjustments and hydrogen peroxide related defense response, and subsequently increased tolerance to S. sclerotiorum in transgenic A. thaliana.

关 键 词:oxalate oxidase oxalic acid Sclerotinia sclerotiorum hydrogen peroxide Arabidopsis thaliana 

分 类 号:S432[农业科学—植物病理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象