Prediction of blast-induced ground vibrations via genetic programming  被引量:4

Prediction of blast-induced ground vibrations via genetic programming

在线阅读下载全文

作  者:Dindarloo Saeid R. 

机构地区:[1]Department of Mining & Nuclear Engineering, Missouri University of Science & Technology

出  处:《International Journal of Mining Science and Technology》2015年第6期1011-1015,共5页矿业科学技术学报(英文版)

摘  要:Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse consequences of blasting. Since there are several effective variables on ground vibrations that have highly nonlinear interactions, no comprehensive model of the blast-induced vibrations are available. In this study, the genetic expression programming technique was employed for prediction of the frequency of the adjacent ground vibrations. Nine input variables were used for prediction of the vibration frequencies at different distances from the blasting face. A high coefficient of determination with low mean absolute percentage error(MAPE) was achieved that demonstrated the suitability of the algorithm in this case. The proposed model outperformed an artificial neural network model that was proposed by other authors for the same dataset.Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse consequences of blasting. Since there are several effective variables on ground vibrations that have highly nonlinear interactions, no comprehensive model of the blast-induced vibrations are available. In this study, the genetic expression programming technique was employed for prediction of the frequency of the adjacent ground vibrations. Nine input variables were used for prediction of the vibration frequencies at different distances from the blasting face. A high coefficient of determination with low mean absolute percentage error (MAPE) was achieved that demonstrated the suitability of the algorithm in this case. The proposed model outperformed an artificial neural network model that was proposed by other authors for the same dataset.

关 键 词:BlastingGround vibrationGenetic programmingArtificial neural networks 

分 类 号:TD235[矿业工程—矿井建设]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象