共面伴飞相对运动椭圆相位最省燃料控制问题  被引量:1

Research on Minimum Fuel Control of Relative Ellipse Phase in In-Plane Companion-Flying

在线阅读下载全文

作  者:吴会英[1] 周美江 齐金玲[1] 

机构地区:[1]上海微小卫星工程中心,上海201203

出  处:《中国空间科学技术》2015年第6期29-39,共11页Chinese Space Science and Technology

摘  要:针对伴随微纳卫星资源受限,轨控需实现最省燃料控制的现实问题,基于Hill方程和二元函数极值理论,研究了共面编队伴飞卫星的最省燃料相位控制策略。分析结果表明:当需要改变的相位为锐角、ΔV<0.5 nb横向控制对相对运动椭圆相位改变效率最高,ΔV=0.5nb|cosΘ|控后相位为相对运动椭圆左右点,同时将相对运动椭圆短半轴控小;以伴随卫星绕参考卫星共面伴飞相位控制为例,应用这一理论求解了控制策略。It is essential to save fuel in orbit control for micro/nano companion satellite due to the lack of resources. The minimum fuel control strategy of the relative ellipse phase in in-plane companion-flying was studied based on the Hill equation and the extreme value theory of dual function. When the phase needed to change is acute angle , and the velocity increment is less than the result that multiplies half of orhit's mean angular by the relative ellipse semi-minor axis (AV ~ O. 5nb ), the theoretical analysis results show that the most efficient control method of the relative ellipse phase is impulsive control parallel to the lateral direction, the velocity increment is the result that multiplies half of orbit's mean angular, the relative ellipse semi-minor axis by the absolute of phase's cosine (ΔV=0.5nb|cosΘ| ), and the phase will be the left (the phase is π/2) or right (the phase is -π/2) point of relative ellipse after control. The relative ellipse semi-minor axis can be reduced at the same time. When the phase needed to change is not acute angle, it is needed to angles for saving fuel. Furthermore, the orbit control strategy of a control was gained by applying the theory.

关 键 词:Hill方程 相位改变量 控制量 控制时机 控制方向 共面编队飞行 伴随卫星 

分 类 号:O316[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象