机构地区:[1]School of Insurance and Economics, University of International Business and Economics [2]Disaster Research Center, PICC Property and Casualty Company Limited [3]School of Materials Science and Engineering,Northwestern Polytechnical University
出 处:《Journal of Wuhan University of Technology(Materials Science)》2015年第6期1130-1133,共4页武汉理工大学学报(材料科学英文版)
基 金:Funded by the National Natural Science Foundation of China(50336040)
摘 要:The magnetization of Hg0.89Mn0.11 Te single crystal grown by vertical Bridgman method was studied by using superconducting quantum interference device magnetometer(SQUID Magnetometer). First, magnetization measurements were done under various magnetic fi eld strengths from-20 kOe to 20 kOe at 5 K, 15 K, and 77 K, respectively. Then, the magnetizations were measured with continuous changes of temperature in the range from 5 K to 300 K under the magnetic field of 0.1 kOe and 10 kOe, respectively. The modifi ed Brillouin function was well fitted with the data of magnetization vs. magnetic field strength. The analysis indicated that there was an antiferromagnetic exchange coupling among Mn^2+ ions. The results of reciprocal susceptibility vs. temperature fi t Curie-Weiss law very well at the temperatures above 40 K, but deviate from the law from 5 Kto 40 K, which shows that the antiferromagnetic exchange coupling among Mn^2+ ions increases in the lower temperature range below 40 K. The experimental result was explained by extending higher-order terms in the calculation of susceptibility and fitted by a power law function. The measurements reveal that Hg0.89Mn0.11 Te possesses paramagnetic properties at temperatures from 5 K to 300 K.The magnetization of Hg0.89Mn0.11 Te single crystal grown by vertical Bridgman method was studied by using superconducting quantum interference device magnetometer(SQUID Magnetometer). First, magnetization measurements were done under various magnetic fi eld strengths from-20 kOe to 20 kOe at 5 K, 15 K, and 77 K, respectively. Then, the magnetizations were measured with continuous changes of temperature in the range from 5 K to 300 K under the magnetic field of 0.1 kOe and 10 kOe, respectively. The modifi ed Brillouin function was well fitted with the data of magnetization vs. magnetic field strength. The analysis indicated that there was an antiferromagnetic exchange coupling among Mn^2+ ions. The results of reciprocal susceptibility vs. temperature fi t Curie-Weiss law very well at the temperatures above 40 K, but deviate from the law from 5 Kto 40 K, which shows that the antiferromagnetic exchange coupling among Mn^2+ ions increases in the lower temperature range below 40 K. The experimental result was explained by extending higher-order terms in the calculation of susceptibility and fitted by a power law function. The measurements reveal that Hg0.89Mn0.11 Te possesses paramagnetic properties at temperatures from 5 K to 300 K.
关 键 词:diluted magnetic semiconductor Hg1-xMnxTe magnetization
分 类 号:TN304.7[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...