Constrained Hamilton variational principle for shallow water problems and Zu-class symplectic algorithm  被引量:2

Constrained Hamilton variational principle for shallow water problems and Zu-class symplectic algorithm

在线阅读下载全文

作  者:Feng WU Wanxie ZHONG 

机构地区:[1]State Key Laboratory of Structural Analysis of Industrial Equipment, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2016年第1期1-14,共14页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.11472067)

摘  要:In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.

关 键 词:shallow water equation (SWE) constrained Hamilton variational principle Zu-class method 

分 类 号:O352[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象