检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gaotong YU Jun GAO Jisheng LUO
机构地区:[1]Department of Mechanics, Tianjin University
出 处:《Applied Mathematics and Mechanics(English Edition)》2016年第1期27-36,共10页应用数学和力学(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Nos.11332007,11172203,and 91216111)
摘 要:The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering the non-parallelism effect, the parabolized stability equation (PSE) method lacks local characteristic of stability analysis. In this paper, a local stability analysis method considering non-parallelism is proposed, termed as EPSE since it may be considered as an expansion of the PSE method. The EPSE considers variation of the shape function in the streamwise direction. Its local characteristic is convenient for stability analysis. This paper uses the EPSE in a strong non-parallel flow and mode exchange problem. The results agree well with the PSE and the direct numerical simulation (DNS). In addition, it is found that the growth rate is related to the normalized method in the non-parallel flow. Different results can be obtained using different normalized methods. Therefore, the normalized method must be consistent.The e-N method is widely used in transition prediction. The amplitude growth rate used in the e-N method is usually provided by the linear stability theory (LST) based on the local parallel hypothesis. Considering the non-parallelism effect, the parabolized stability equation (PSE) method lacks local characteristic of stability analysis. In this paper, a local stability analysis method considering non-parallelism is proposed, termed as EPSE since it may be considered as an expansion of the PSE method. The EPSE considers variation of the shape function in the streamwise direction. Its local characteristic is convenient for stability analysis. This paper uses the EPSE in a strong non-parallel flow and mode exchange problem. The results agree well with the PSE and the direct numerical simulation (DNS). In addition, it is found that the growth rate is related to the normalized method in the non-parallel flow. Different results can be obtained using different normalized methods. Therefore, the normalized method must be consistent.
关 键 词:parabolized stability equation (PSE) expansion of PSE (EPSE) linear stability theory (LST) normalized method non-parallel
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.169