Multiple effects of sediment transport and geomorphic processes within flood events: Modelling and understanding  被引量:4

Multiple effects of sediment transport and geomorphic processes within flood events: Modelling and understanding

在线阅读下载全文

作  者:Mingfu Guan Nigel G. Wright P, Andrew Sleigh 

机构地区:[1]University of Leeds, Leeds, LS2 9JT, UK

出  处:《International Journal of Sediment Research》2015年第4期371-381,共11页国际泥沙研究(英文版)

摘  要:Flood events can induce considerable sediment transport which in turn influences flow dynamics. This study investigates the multiple effects of sediment transport in floods through modelling a series of hydraulic scenarios, including small-scale experimental cases and a full-scale glacial outburst flood. A non-uniform, layer-based morphodynamic model is presented which is composed of a combination of three modules: a hydrodynamic model governed by the two-dimensional shallow water equations involving sediment effects; a sediment transport model controlling the mass conservation of sediment; and a bed deformation model for updating the bed elevation. The model is solved by a second-order Godunov-type numerical scheme. Through the modelling of the selected sediment-laden flow events, the interactions of flow and sediment transport and geomorphic processes within flood events are elucidated. It is found that the inclusion of sediment transport increases peak flow discharge, water level and water depth in dam-break flows over a flat bed. For a partial dam breach, sediment material has a blockage effect on the flood dynamics. In comparison with the 'sudden collapse' of a dam, a gradual dam breach significantly delays the arrival time of peak flow, and the flow hydrograph is changed similarly. Considerable bed erosion and deposition occur within the rapid outburst flood, which scours the river channel severely. It is noted that the flood propagation is accelerated after the incorporation of sediment transport, and the water level in most areas of the channel is reduced.Flood events can induce considerable sediment transport which in turn influences flow dynamics. This study investigates the multiple effects of sediment transport in floods through modelling a series of hydraulic scenarios, including small-scale experimental cases and a full-scale glacial outburst flood. A non-uniform, layer-based morphodynamic model is presented which is composed of a combination of three modules: a hydrodynamic model governed by the two-dimensional shallow water equations involving sediment effects; a sediment transport model controlling the mass conservation of sediment; and a bed deformation model for updating the bed elevation. The model is solved by a second-order Godunov-type numerical scheme. Through the modelling of the selected sediment-laden flow events, the interactions of flow and sediment transport and geomorphic processes within flood events are elucidated. It is found that the inclusion of sediment transport increases peak flow discharge, water level and water depth in dam-break flows over a flat bed. For a partial dam breach, sediment material has a blockage effect on the flood dynamics. In comparison with the 'sudden collapse' of a dam, a gradual dam breach significantly delays the arrival time of peak flow, and the flow hydrograph is changed similarly. Considerable bed erosion and deposition occur within the rapid outburst flood, which scours the river channel severely. It is noted that the flood propagation is accelerated after the incorporation of sediment transport, and the water level in most areas of the channel is reduced.

关 键 词:Sediment transportMorphodynamic modelDam-breakOutburst flood 

分 类 号:U469.11[机械工程—车辆工程] X53[交通运输工程—载运工具运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象