检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李丹[1] 刘勇[1] 王怀兴[1] 肖龙胜[1] 凌福日[2] 姚建铨[1,3]
机构地区:[1]湖北第二师范学院应用物理系,武汉430205 [2]华中科技大学光学与电子信息学院,武汉430074 [3]天津大学精密仪器与光电工程学院,天津300072
出 处:《物理学报》2016年第1期316-320,共5页Acta Physica Sinica
基 金:湖北省自然科学基金(批准号:2014CFB562)资助的课题~~
摘 要:基于麦克斯韦方程组和物质本构方程对石墨烯表面等离子体进行了研究.从理论上探索了石墨烯表面等离子体激元在太赫兹波段的增益特性曲线,并且讨论了石墨烯表面等离子体增益与石墨烯中载流子浓度、石墨烯所处温度以及载流子动量弛豫时间的关系.研究结果表明:在太赫兹波段增益峰值随着石墨烯载流子浓度的增加而发生蓝移,并且在所讨论的温度范围内,由于增益峰所对应的频率都大于1 THz,因此温度的变化对增益峰值以及相应频率的影响不大,即在不同的温度下,相同载流子浓度所对应的增益曲线上峰值的位置和强度几乎相同;增益与石墨烯载流子动量弛豫时间相关,随着载流子动量弛豫时间的增加,使得激发态激励的电子增加,从而导致石墨烯表面等离子体增益变得更大,但这种动量弛豫时间的增加却因弛豫时间对受激辐射频率影响较小而并未对增益峰值位置产生影响.Graphene is a single atomic layer of carbon atoms forming a dense honeycomb crystal lattice. Now tremendous results of two dimensional(2D) graphene have been obtained recently in the electronic properties both experimentally and theoretically due to the massless energy dispersion relation of electrons and holes with zero(or close to zero) bandgap. In addition, through the process of stimulated emission in population inverted graphene layers, the coupling of the plasmons to interband electron-hole transitions can lead to plasmon amplification. Recently, research results have also shown that at moderate carrier densities(109–1011/cm2), the frequencies of plasma waves in graphene are in the terahertz range.In this paper, based on the Maxwell's equations and material constitutive equation, the gain characteristics of the surface plasmon in graphene are theoretically studied in the terahertz range. In the simulations process we assume a nonequilibrium situation in graphene, where the densities of the electron and the hole are equal. And the gain characteristics for different carrier concentrations, graphene temperature and the momentum relaxation time are calculated. The calculated results show that the peak gain positions shift towards the higher frequencies with the increase of the quasi Fermi level of electron and hole associated with electron-hole concentrations. The reason may be that the change rate of the electron quasi Fermi level is higher than the hole's and thus the distributions of electrons and holes in energy are broader, resulting in the peak gain frequency shifting towards higher frequencies. However, the results also indicate that the temperature of the graphene has little effect on both the peak gain value and the peak gain position of the plasmon.It is maybe because in the simulation process the temperature is taken to be less than 50 K, which is corresponding to the energy of the 1 THz. However the calculated results show that the frequencies of the gain peak positions are all lar
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28