检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Inforation and Computing Science,College of Science,Jiangnan University,Wuxi 214122,China [2]College of Internet of Things,Jiangnan University,Wuxi 214122,China [3]Department of Mathematics,Harbin Institute of Technology,Harbin 150001,China
出 处:《Chinese Physics B》2016年第1期419-427,共9页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.11401259);the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRR11407)
摘 要:In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrodinger equations with variable coefficients, cubic nonlinear Schrodinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrodinger equations with variable coefficients, cubic nonlinear Schrodinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.
关 键 词:multi-symplectic form formulas variational integrators conservation laws nonlinear Schr/Sdingerequations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43