On Conway's Potential Function for Colored Links  

On Conway's Potential Function for Colored Links

在线阅读下载全文

作  者:Bo Ju JIANG 

机构地区:[1]Department of Mathematics, Peking University

出  处:《Acta Mathematica Sinica,English Series》2016年第1期25-39,共15页数学学报(英文版)

基  金:Partially supported by NSFC(Grant No.#11131008)

摘  要:The Conway potential function (CPF) for colored links is a convenient version of the multi- variable Alexander-Conway polynomial. We give a skein characterization of CPF, much simpler than the one by Murakami. In particular, Conway's "smoothing of crossings" is not in the axioms. The proof uses a reduction scheme in a twisted group-algebra PnBn, where Bn is a braid group and Pn is a domain of multi-variable rational fractions. The proof does not use computer algebra tools. An interesting by-product is a characterization of the Alexander-Conway polynomial of knots.The Conway potential function (CPF) for colored links is a convenient version of the multi- variable Alexander-Conway polynomial. We give a skein characterization of CPF, much simpler than the one by Murakami. In particular, Conway's "smoothing of crossings" is not in the axioms. The proof uses a reduction scheme in a twisted group-algebra PnBn, where Bn is a braid group and Pn is a domain of multi-variable rational fractions. The proof does not use computer algebra tools. An interesting by-product is a characterization of the Alexander-Conway polynomial of knots.

关 键 词:Colored links Conway potential function Alexander polynomial skein relations 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象