检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bo Ju JIANG
机构地区:[1]Department of Mathematics, Peking University
出 处:《Acta Mathematica Sinica,English Series》2016年第1期25-39,共15页数学学报(英文版)
基 金:Partially supported by NSFC(Grant No.#11131008)
摘 要:The Conway potential function (CPF) for colored links is a convenient version of the multi- variable Alexander-Conway polynomial. We give a skein characterization of CPF, much simpler than the one by Murakami. In particular, Conway's "smoothing of crossings" is not in the axioms. The proof uses a reduction scheme in a twisted group-algebra PnBn, where Bn is a braid group and Pn is a domain of multi-variable rational fractions. The proof does not use computer algebra tools. An interesting by-product is a characterization of the Alexander-Conway polynomial of knots.The Conway potential function (CPF) for colored links is a convenient version of the multi- variable Alexander-Conway polynomial. We give a skein characterization of CPF, much simpler than the one by Murakami. In particular, Conway's "smoothing of crossings" is not in the axioms. The proof uses a reduction scheme in a twisted group-algebra PnBn, where Bn is a braid group and Pn is a domain of multi-variable rational fractions. The proof does not use computer algebra tools. An interesting by-product is a characterization of the Alexander-Conway polynomial of knots.
关 键 词:Colored links Conway potential function Alexander polynomial skein relations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28