检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Colledge of Automation,Engineering,Qingdao University [2]Department of Mathematics,Brock University
出 处:《Acta Mathematica Sinica,English Series》2016年第2期251-257,共7页数学学报(英文版)
基 金:Supported by a Discovery Grant from the Natural Science and Engineering Research Council of Canada;the National Natural Science Foundation of China(Grant Nos.71171120,71571108,11401329);the Project of International(Regional) Cooperation and Exchanges of NSFC(Grant No.71411130215);the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133706110002);the Natural Science Foundation of Shandong Province(Grant No.ZR2015GZ007);the Doctoral Fund of Shandong Province(Grant No.BS2012SF003);the Project of Shandong Province Higher Educational Science and Technology Program(Grant No.J14LI10);the Project of Shandong Province Higher Educational Excellent Backbone Teachers for International Cooperation and Training
摘 要:Let D be a generalized dihedral group and Autcol(D) its Coleman automorphism group. Denote by Outcol(D) the quotient group of Autcol(D) by Inn(D), where Inn(D) is the inner automorphism group of D. It is proved that either Outcol(D) = i or Outcol(D) is an elementary abelian 2-group whose order is completely determined by the cardinality of π(D). Furthermore, a necessary and sufficient condition for Outcol(D) = 1 is obtained. In addition, whenever Outcol(D) ≠ 1, it is proved that Autcol(D) is a split extension of Inn(D) by an elementary abelian 2-group for which an explicit description is given.Let D be a generalized dihedral group and Autcol(D) its Coleman automorphism group. Denote by Outcol(D) the quotient group of Autcol(D) by Inn(D), where Inn(D) is the inner automorphism group of D. It is proved that either Outcol(D) = i or Outcol(D) is an elementary abelian 2-group whose order is completely determined by the cardinality of π(D). Furthermore, a necessary and sufficient condition for Outcol(D) = 1 is obtained. In addition, whenever Outcol(D) ≠ 1, it is proved that Autcol(D) is a split extension of Inn(D) by an elementary abelian 2-group for which an explicit description is given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147