Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations  被引量:1

Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations

在线阅读下载全文

作  者:Quan-sen JIU Huan YU 

机构地区:[1]School of Mathematical Sciences,Capital Normal University

出  处:《Acta Mathematicae Applicatae Sinica》2016年第1期1-16,共16页应用数学学报(英文版)

基  金:supported by National Natural Sciences Foundation of China(No.11171229,11231006 and 11228102);project of Beijing Chang Chen Xue Zhe

摘  要:In this paper,we study the Cauchy problem for the 3D generalized Navier-Stokes-Boussinesq equations with fractional diffusion:{ut+(u·▽)u+v∧^2αu=-▽p+θe3,e3=(0,0,1)^T,θt+(u·▽)θ=0,Dicu=0. With the help of the smoothing effect of the fractional diffusion operator and a logarithmic estimate,we prove the global well-posedness for this system with α≥5/4.Moreover,the uniqueness and continuity of the solution with weaker initial data is based on Fourier localization technique.Our results extend ones on the 3D Navier-Stokes equations with fractional diffusion.In this paper,we study the Cauchy problem for the 3D generalized Navier-Stokes-Boussinesq equations with fractional diffusion:{ut+(u·▽)u+v∧^2αu=-▽p+θe3,e3=(0,0,1)^T,θt+(u·▽)θ=0,Dicu=0. With the help of the smoothing effect of the fractional diffusion operator and a logarithmic estimate,we prove the global well-posedness for this system with α≥5/4.Moreover,the uniqueness and continuity of the solution with weaker initial data is based on Fourier localization technique.Our results extend ones on the 3D Navier-Stokes equations with fractional diffusion.

关 键 词:generalized Navier-Stokes-Boussinesq equations global well-posedness uniqueness fourier localization 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象