基于风险偏好与满意度的区间值合作对策  被引量:6

Interval-valued Cooperative Games Based on Risk Preferences and Satisfaction

在线阅读下载全文

作  者:邹正兴[1,3] 李登峰[2] 何云[3] 

机构地区:[1]北京理工大学管理与经济学院,北京100081 [2]福州大学经济与管理学院,福建福州350108 [3]燕京理工学院数学实验室,河北三河065201

出  处:《运筹与管理》2015年第6期34-43,共10页Operations Research and Management Science

基  金:国家自然科学基金重点项目(71231003);国家自然科学基金资助项目(71171055;71071018;71371030)

摘  要:研究区间Shapley值一般是以超可加区间值合作对策或凸区间值合作对策为前提,但这限制了区间Shapley值的适用范围。本文以区间数的接受指标及局中人对风险的偏好水平为基础,提出了局中人满意度的概念,并利用满意度对区间值合作对策进行了探讨。通过计算区间值合作对策的局中人与联盟对其区间Shapley值的满意度,来判断区间Shapley值是否被局中人或联盟接受,形成的联盟是否稳定,拓展了区间值合作对策Shapley值的适用范围。同时,得到了当区间值合作对策满足一定条件时满意度的一些性质。The study of interval Shapley value is usually based on superadditive interval-valued cooperation games or convex interval-valued cooperative games, limiting the scope of the application of the interval Shapley value. Based on acceptability index the fuzzy preference ordering for interval and the intensities of risk preferences for players, we discuss the concept of the players with degrees of satisfaction. In this paper, we find that the degree of satisfaction plays a key role of analyzing the interval-valued cooperative games. By calculating the degrees of satisfaction with the allocation for interval-valued cooperative games, we find it obvious to determine whether the allocation, including the interval Shapley value, is reasonable. And we can judge whether the coalitions of players who coordinate their actions is stable by using the degrees of satisfaction. The basis of this method is an extension of the application of the interval Shapley value. Furthermore, we get some useful properties when the interval-valued cooperative game is at particular situations.

关 键 词:区间值合作对策 区间Shapley值 接受指标 区间数 风险偏好 满意度 

分 类 号:O225[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象