检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桥梁工程结构动力学国家重点实验室,重庆400067 [2]广东省路桥建设发展有限公司广韶分公司,广东清远511675
出 处:《公路交通技术》2015年第6期27-31,共5页Technology of Highway and Transport
基 金:重庆市科技人才培养计划资助项目(cstc2014kjrc-qnrc30003);交通运输部西部交通建设科技项目(2013 319 740 080;2013 364 740 600)
摘 要:固支-固支和固支-铰支2类典型边界条件下桥梁承重吊杆频率表达式无类似于铰支-铰支边界条件下的显式表达式,这是由于这2类边界条件下短吊杆的频率方程是含有三角函数和双曲线函数的超越方程,需要进行非线性迭代,迭代过程可能造成数据溢出等数值病态。推导2类典型边界条件下承重短吊杆频率的统一表达式,并借助非线性迭代和参数拟合等手段,给出显式拟合公式。数值对比研究表明:在2类典型边界条件下频率拟合公式的相对误差在±2%以内。这些拟合公式是吊杆频率快速估计的简洁方法。The frequency expression of bearing derricks of bridges under 2 typical boundary conditions,i.e. fixed- fixed support and fixed- hinge support is not similar to the explicit expression under the hinge support- hinge support boundary conditions because the frequency equation of short derricks under such 2boundary conditions is a transcendental equation containing trigonometric function and hyperbolic function and shall be subject to nonlinear iteration,and the iteration process may cause numerical ill- conditions such as data overflow,etc. This paper derives a unified expression of frequency of short bearing derricks under 2 typical boundary conditions and presents the explicit fitting formulae with the help of means such as nonlinear iteration and parameter fitting,etc. The numerical comparative study shows that the relative error of frequency fitting formulae under 2 typical boundary conditions is within ± 2%. These fitting formulae provide a succinct method for quick estimate of derrick frequency.
关 键 词:桥梁吊杆 固支-固支边界条件 固支-铰支边界条件 频率估计公式
分 类 号:U448.25[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69