Effect of niobium addition on magnetization reversal behavior for SmCo-based magnets with TbCu7-type structure  被引量:6

Effect of niobium addition on magnetization reversal behavior for SmCo-based magnets with TbCu_7-type structure

在线阅读下载全文

作  者:胡晨宇 泮敏翔 吴琼 葛洪良 王秀敏 卢阳春 张朋越 

机构地区:[1]Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018, China [2]Zhejiang Kaiwen Magnetic Limited Company, Dongyang 322105, China

出  处:《Journal of Rare Earths》2016年第1期61-65,共5页稀土学报(英文版)

基  金:supported by the Natural Science Foundation of Zhejiang Province(LQ15E010005;LR15E010001);National Natural Science Foundation of China(51001092;61379027;51371163 and 51301158);the National Public Interest Research Special Fund(201210107)

摘  要:The effect of Nb addition on the microstructure and magnetic properties of nanocrystaUine Sm(CobaiNbxZr0.02)7 permanent magnet were investigated, The magnetization reversal behavior for ball milled Sm(CobaiNbxZr0.02)7 samples with high coercivity was investigated by analyzing hysteresis curves and recoil loops of demagnetization curves. Nb addition proved to result in relevant improvement in the magnetic properties, especially in the coercivity He. It was shown that the magnetic properties of Sm(CobalNbx- Zr0.02)7 nanocrystalline magnets were improved by an additional 0.06 at.% Nb. In particular, Hc was improved from 602 to 786 kA/m at room temperature. The maximum value of the integrated recoil loops area for 0.06 at.% Nb-doped samples of 1.81 kJ/m3 was much lower than that of the Nb-free sample, which could be explained by a smaller recoverable portion of the magnetization remaining in the Nb-doped sample when the applied field was below the coercivity Hc. The nucleation field Hn for irreversible magnetization reversal of the magnetically hard phase were calculated by analyzed in terms of the△Mirrev-H curve and the Kondorsky model.The effect of Nb addition on the microstructure and magnetic properties of nanocrystaUine Sm(CobaiNbxZr0.02)7 permanent magnet were investigated, The magnetization reversal behavior for ball milled Sm(CobaiNbxZr0.02)7 samples with high coercivity was investigated by analyzing hysteresis curves and recoil loops of demagnetization curves. Nb addition proved to result in relevant improvement in the magnetic properties, especially in the coercivity He. It was shown that the magnetic properties of Sm(CobalNbx- Zr0.02)7 nanocrystalline magnets were improved by an additional 0.06 at.% Nb. In particular, Hc was improved from 602 to 786 kA/m at room temperature. The maximum value of the integrated recoil loops area for 0.06 at.% Nb-doped samples of 1.81 kJ/m3 was much lower than that of the Nb-free sample, which could be explained by a smaller recoverable portion of the magnetization remaining in the Nb-doped sample when the applied field was below the coercivity Hc. The nucleation field Hn for irreversible magnetization reversal of the magnetically hard phase were calculated by analyzed in terms of the△Mirrev-H curve and the Kondorsky model.

关 键 词:nanocrystalline magnet magnetization reversal YbCu7 structure magnetic property rare earths 

分 类 号:TM27[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象