检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李宁宇[1] 苏玉民[1] 刘葳兴 刘鹏[1] 曹建
机构地区:[1]哈尔滨工程大学水下机器人技术重点实验室,黑龙江哈尔滨150001
出 处:《应用科技》2015年第6期26-31,35,共7页Applied Science and Technology
基 金:国家自然科学基金资助项目(51479039)
摘 要:针对目前拍动翼尾涡结构与水动力性能关系的研究有限,参数影响分析集中于水动力性能方面,且拍动翼等仿生流动的数值模拟经常涉及复杂移动边界问题的现状,应用自主开发的改进浸入边界法数值模拟拍动翼的非定常运动,探讨翼运动学、涡动力学和力的产生之间的关系。结果表明,所提出的边界条件重建算法兼顾计算效率和健壮性,开发的移动边界处理方法可有效解决浸入边界法中移动边界相关问题。三维拍动翼的尾涡由两列形状复杂的涡环组成,这两列涡环与尾流中心线成一定倾角向下游对流。水动力性能随运动参数的变化取决于力产生表象之下的涡动力学,包括涡的强度和方向、涡环的相互连接和粘性耗散。At present,the number of studies that have examined the relationship between flapping wing trailing vortex structure and hydrodynamic performance is limited,and the analysis of the effect of parameters is focused on hydrodynamic performance. Parameter simulation for flapping wing and other bionic flows always involves in issues of the complex moving boundary. Self-developed improved immersed boundary method is applied to numerically simulate the non-stationary motion of the flapping wing. Relationship between wing kinematics,vortex dynamics and generation of force is discussed. Results show that the reconstruction algorithm of boundary conditions gives consideration to both calculation efficiency and robustness. The treatment method of the moving boundary developed in this paper can effectively solve the issues related to the moving boundary of the immersed boundary method. Trailing vortex of the 3D flapping wing is constituted by two lines of complex vortex rings. The two lines of complex vortex rings and center line of trailing flow form a dip angle and flow to downstream. Hydrodynamic performance varying with kinematic parameters is decided by the vortex dynamics under the appearance of force production,including the strength and direction of vortex,interconnection of vortex rings and viscous dissipation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3