高光谱特征参量的冬小麦吸收性光合有效辐射分量估算模型  被引量:4

Estimation of Fraction of Absorbed Photosynthetically Active Radiation for Winter Wheat Based on Hyperspectral Characteristic Parameters

在线阅读下载全文

作  者:张超[1,2] 蔡焕杰[1,2] 李志军[1,2] 

机构地区:[1]西北农林科技大学旱区农业水土工程教育部重点实验室 [2]西北农林科技大学中国旱区节水农业研究院,陕西杨凌712100

出  处:《光谱学与光谱分析》2015年第9期2644-2649,共6页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(51179162);国家科技支撑计划课题项目(2011BAD29B01);高等学校学科创新引智计划项目(B12007)资助

摘  要:精确估算吸收性光合有效辐射分量(EPAR)对于检测植被水分、能量及碳循环平衡具有重要意义。应用ASD地物光谱仪与SUNSCAN冠层分析仪对冬小麦整个生育期内冠层光谱反射和光合有效辐射进行监测,并利用冠层反射率数据构建了24个高光谱特征参量,通过分析不同光谱特征参量与冬小麦FPAR的相关关系,建立冬小麦FPAR光谱参量估算模型。结果表明:除蓝边幅值Db外其余高光谱参量均与冬小麦FPAR呈极显著相关(p<0.01)。红边面积SDr与蓝边面积SDb的比值(VI4)与FPAR的相关系数最高,达到0.836。提取相关性较高的7个光谱参量分别与冬小麦FPAR建立最优线性与非线性估算模型,通过精度检验分析,优选了冬小麦FPAR最合适的模型。对于线性模型,绿峰位置λg与FPAR的反演模型最好,其预测模型的R2,RMSE和RRMSE分别为0.679,0.111和20.82%;对于非线性模型,绿峰反射率Rg与红谷反射率Rr的归一化比值(VI2)与FPAR的反演模型最好,其预测模型的R2,RMSE和RRMSE分别为0.724,0.088和21.84%。为进一步提高模型精度,分别运用多元线性逐步回归与BP神经网络建立多个高光谱参量同时参与的模型,与单参量模型相比,BP神经网络模型的反演精度明显提高(R2=0.906,RMSE=0.08,RRMSE=16.57%)。利用高光谱特征参量测定冬小麦FAPR具有可行性,这为实时、有效、准确监测冬小麦生长过程中FPAR的动态变化提供了一种新的方法和理论依据。Estimating fraction of absorbed photosynthetically active radiation (FPAR)precisely has great importance for detec-ting vegetation water content,energy and carbon cycle balance.Based on this,ASD FieldSpec 3 and SunScan canopy analyzer were applied to measure the canopy spectral reflectance and photosynthetically active radiation over whole growth stage of winter wheat.Canopy reflectance spectral data was used to build up 24 hyperspectral characteristic parameters and the correlation be-tween FPAR and different spectral characteristic parameters were analyzed to establish the estimation model of FPAR for winter wheat.The results indicated that there were extremely significant correlations (p 〈0.01 )between FPAR and hyperspectral characteristic parameters except the slope of blue edge (Db).The correlation coefficient between FPAR and the ratio of red edge area to blue edge area (VI4 )was the highest,reaching at 0.836.Seven spectral parameters with higher correlation coefficient were selected to establish optimal linear and nonlinear estimation models of FPAR,and the best estimating models of FPAR were obtained by accuracy analysis.For the linear model,the inversion model between green edge and FPAR was the best,with R 2 , RMSE and RRMSE of predicted model reaching 0.679,0.111 and 20.82% respectively.For the nonlinear model,the inversion model between VI2 (normalized ratio of green peak to red valley of reflectivity)and FPAR was the best,with R 2 ,RMSE and RRMSE of predicted model reaching 0.724,0.088 and 21.84% for.In order to further improve the precision of the model,the multiple linear regression and BP neural network methods were used to establish models with multiple high spectral parameters BP neural network model (R 2 =0.906,RMSE=0.08,RRMSE=16.57%)could significantly improve the inversion precision compared with the single variable model.The results show that using hyperspectral characteristic parameters to estimate FPAR of winter wheat is feasible.It provides a new method and theor

关 键 词:冬小麦 高光谱特征参量 光合有效辐射 

分 类 号:S127[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象