检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gui-ming YANG Xiao-hui FAN Xu-ling CHEN Xiao-xian HUANG Xi LI
机构地区:[1]School of Minerals Processing and Bioengineering, Central South University
出 处:《Journal of Iron and Steel Research International》2015年第11期1002-1008,共7页
基 金:Item Sponsored by National Natural Science Foundation of China(51174253)
摘 要:Cooling process of iron ore pellets in a circular cooler has great impacts on the pellet quality and systematic energy exploitation. However, multi-variables and non-visualization of this gray system is unfavorable to efficient production. Thus, the cooling process of iron ore pellets was optimized using mathematical model and data mining techniques. A mathematical model was established and validated by steady-state production data, and the results show that the calculated values coincide very well with the measured values. Based on the proposed model, effects of important process parameters on gas-pellet temperature profiles within the circular cooler were analyzed to better understand the entire cooling process. Two data mining techniques—Association Rules Induction and Clustering were also applied on the steady-state production data to obtain expertise operating rules and optimized targets. Finally, an optimized control strategy for the circular cooler was proposed and an operation guidance system was developed. The system could realize the visualization of thermal process at steady state and provide operation guidance to optimize the circular cooler.Cooling process of iron ore pellets in a circular cooler has great impacts on the pellet quality and systematic energy exploitation. However, multi-variables and non-visualization of this gray system is unfavorable to efficient production. Thus, the cooling process of iron ore pellets was optimized using mathematical model and data mining techniques. A mathematical model was established and validated by steady-state production data, and the results show that the calculated values coincide very well with the measured values. Based on the proposed model, effects of important process parameters on gas-pellet temperature profiles within the circular cooler were analyzed to better understand the entire cooling process. Two data mining techniques—Association Rules Induction and Clustering were also applied on the steady-state production data to obtain expertise operating rules and optimized targets. Finally, an optimized control strategy for the circular cooler was proposed and an operation guidance system was developed. The system could realize the visualization of thermal process at steady state and provide operation guidance to optimize the circular cooler.
关 键 词:iron ore pellet circular cooler model data mining optimization
分 类 号:TF046.6[冶金工程—冶金物理化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222