Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam  被引量:3

Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam

在线阅读下载全文

作  者:Ming-chao Li Xin-yu Guo Jonathan Shi Ze-biao Zhu 

机构地区:[1]State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University [2]College of Engineering, Louisiana State University

出  处:《Water Science and Engineering》2015年第4期326-334,共9页水科学与水工程(英文版)

基  金:supported by the National Basic Research Program of China(Grant No.2013CB035903);the National Natural Science Foundation of China(Grants No.51321065 and 51209159)

摘  要:This study used the finite element method (FEM) to analyze the stress field and seepage field of a roller-compacted concrete (RCC) dam, with an upstream impervious layer constructed with different types of concrete materials, including three-graded RCC, two-graded RCC, conven- tional vibrated concrete (CVC), and grout-enriched vibrated RCC (GEVR), corresponding to the design schemes S 1 through $4. It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and flood-check level. Stress field analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel, the maximum compressive stress occurs near the dam toe, and the stress distributions in the four schemes can satisfy the stress control criteria. Seepage field analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region, and that the calculated results of daily seepage flow under the steady seepage condition in these two schemes are about 30%-50% lower than those in the other two schemes, demonstrating that CVC and GEVR show better anti-seepage performance. The results provide essential parameters such as the uplift pressure head and seelga^e flow for physical model tests and anti-seepage structure selection in RCC dams.This study used the finite element method (FEM) to analyze the stress field and seepage field of a roller-compacted concrete (RCC) dam, with an upstream impervious layer constructed with different types of concrete materials, including three-graded RCC, two-graded RCC, conven- tional vibrated concrete (CVC), and grout-enriched vibrated RCC (GEVR), corresponding to the design schemes S 1 through $4. It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and flood-check level. Stress field analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel, the maximum compressive stress occurs near the dam toe, and the stress distributions in the four schemes can satisfy the stress control criteria. Seepage field analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region, and that the calculated results of daily seepage flow under the steady seepage condition in these two schemes are about 30%-50% lower than those in the other two schemes, demonstrating that CVC and GEVR show better anti-seepage performance. The results provide essential parameters such as the uplift pressure head and seelga^e flow for physical model tests and anti-seepage structure selection in RCC dams.

关 键 词:RCC gravity dam Concrete parition Impervious layer FEM Seepage field Stress field 

分 类 号:TV223.4[水利工程—水工结构工程] TV642

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象