检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李德龙[1] 许小华[1] 黄萍[1] 雷声[1] 张秀平[1] 孙瑞刚
机构地区:[1]江西省水利科学研究院信息与自动化研究所,江西南昌330029 [2]中国水利水电出版社,北京100038
出 处:《水利水电技术》2015年第12期124-128,132,共6页Water Resources and Hydropower Engineering
基 金:水利部公益性行业科研专项经费项目"应急水文预报分析关键技术研究"(201001045)
摘 要:传统的洪水评估方法存在着评估等级离散和结果不易分辨等不足,如何更准确高效地解决洪水评估问题已成为研究领域的热点之一。以南京站的历史洪水及四川省历史洪水灾情为例,在改进智能优化算法的基础上,引入了基于智能优化算法的投影寻踪模型,并探讨该模型在洪水分类和洪灾等级评价中的应用。结果表明,人工蜂群和混合蛙跳这类新型智能优化算法具有简单、鲁棒、全局寻优和易于实现等特点,与广泛应用于水文界的SCE-UA、文献中的加速遗传等现代启发式算法相比,具有寻优速度更快、能力更强的优势,可为洪水分类和洪灾等级评价等相近领域研究提供新途径。By taking the historical floods recorded in Nanjing Hydrological Station and the historical flood disasters occurred in Sichuan Province as the study cases, the improved intelligence optimization algorithms-based projection pursuit model is introduced herein on the basis of improving intelligence optimization algorithms, and then the applications of the model to the flood classification and the evaluation of flood disaster grade are discussed. The result shows that the new artificial intelligence optimization algorithms, such as artificial bee colony algorithm and shuffled frog leaping algorithm, have the features of simplicity, robustness, global optimization and easy realization ; which have the advantages of quicker optimizing speed and stronger optimizing capacity, if compared with the heuristic algorithms, such as SCE - UA used in the field of hydrology and those accelerating genetic algorithms given in the literatures concerned, and then can be provide a new way for the studies made in the similar fields of flood classification, evaluation of flood disaster grade, etc.
关 键 词:人工蜂群算法 混合蛙跳算法 投影寻踪模型 洪水分类 洪水灾情 等级评价
分 类 号:TV122[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249