检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈志佳[1] 朱元昌[1] 邸彦强[1] 冯少冲[1]
机构地区:[1]军械工程学院电子与光学工程系,河北石家庄050003
出 处:《微电子学与计算机》2016年第2期39-43,共5页Microelectronics & Computer
基 金:装备预研基金(9140A04030214JB34001)
摘 要:为提升系统容错能力,降低容错开销,提出一种适应于云训练系统的自适应副本容错策略.首先分析了云训练系统内涵以及容错结构.通过分析确定自适应副本策略待解决的三个问题:节点选择,副本数量以及位置分布.引入节点活跃度评价节点是否需要生成副本;结合容错需求,得到需要生成的副本数量;通过加权升序匹配算法,实现位置分布的确定.实验中,引入容错度等概念对策略进行评价,数据表明自适应副本容错策略可以有效保证云训练的容错能力,降低容错开销.To improve the fault tolerance capability and decrease the fault tolerance overhead, a self-adaptive backup strategy suitable for cloud training system is proposed. The connotation and fault tolerance architecture of cloud training are analyzed. Three problems of the self-adaptive backup strategy are analyzed: node select, the number of backups and the location distribution. The node activity degree is introduced to evaluate the backup demands of nodes. The backup number is obtained combined with fault tolerance demands. By weighted ascending matching select, the location distribution is determined. Fault tolerance degree is introduced to the experiments. The results show that the proposed self-adaptive backup fault tolerance strategy can effectively improve the fault tolerance capability and decrease the overhead of fault tolerance.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.191.41