检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石美红[1] 赵辉[1] 贾郑磊 雷燕[1] 张祥俊[1]
机构地区:[1]西安工程大学计算机科学学院,陕西西安710048
出 处:《微电子学与计算机》2016年第2期49-53,共5页Microelectronics & Computer
基 金:国家科技支撑计划项目(2014BAF07B01)
摘 要:为了解决大规模高维WSN数据的双重聚类问题,提出一种基于数据场的WSN数据聚类方法.借用数据场的思想,将WSN数据空间非线性映射到势能空间;结合WSN数据的分布特点,采用概率熵度量数据的质量;根据数据场形成的等势线分布特征,采用极小判定法得到数据聚类结果.通过人工合成数据集实验测试,结果表明,对于随机分布的大规模数据集的聚类效果和聚类精确度,此算法优于ICC和DFCM的双重聚类算法,且具有较低的时间复杂度和良好的可扩展性.The paper has proposed a novel self-organizing-mapping algorithm based on data-field model for dual clustering of large-scale and high dimensional data in Wireless Sensor Networks (WSNs) in order to has good performance in cluster problems. The method maps the WSNs data from data space to the appropriate potential space in data field, which measures the interactions of the elements in large-scale and high dimensional data by taking probabilistic entropy of data distribution in the WSNs as the mass of data field, thus generating a two- dimension data field. Then, by employing distribution features of the potential center and the equipotential lines, without significantly increasing the time complexity, the good clustering result is obtained by minimum potential difference determination method. The comparing experiments on the synthetic datasets demonstrate the effectiveness of the algorithm. Experimental results show that the proposed method improves the clustering effect and has exact clustering result compared with other dual clustering algorithm, i.e. ICC and DFCM, and it has good scalahility.
关 键 词:无线传感器网 大规模高维数据 双重聚类 数据场 势能
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.247.210