检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘欣[1] 熊伟丽[1,2] 孙顺远[1] 徐保国[1]
机构地区:[1]江南大学物联网工程学院,江苏无锡214122 [2]江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
出 处:《计算机应用研究》2016年第2期552-556,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(21206053;21276111);江苏高校优势学科建设工程资助项目(PAPD)
摘 要:针对有向传感器节点大规模随机部署形成的感知重叠区和监测盲区,在节点位置不变、感知方向可调的前提下,协同调整节点感知方向使其覆盖范围从感知重叠区旋转到监测盲区以增强网络覆盖。将有向传感器网络覆盖增强问题转换为以区域覆盖率为目标函数、节点集感知方向为决策变量的最优化问题,提出了基于扩展变异模式的自适应差分进化算法求解该问题,即寻求一种节点感知方向分布方案最大化区域覆盖率。算法迭代前期采用DE/rand/1/bin变异策略以保证种群的多样性,后期采用扩展变异模式DE/current-to-best/2/bin加强算法的收敛速度以保证算法高效率地搜索全局最优解。与传统的有向传感器网络覆盖增强算法对比,仿真实验验证了算法的有效性。Aiming at eliminating the sensing overlapping regions and coverage holes caused by random deployment of nodes, the major sensing direction can be adjusted to make sensors uniformly distributed as well as the coverage enhancing in the di- rection adjustable sensing model. This paper proposed an extended-differentiation-mode based adaptive differential evolution algorithm in which the major sensing direction of nodes was treated as decision variable and coverage ratio was selected as ob- jective function. In early stage, the improved algorithm used DE/rand/l/bin differentiation mode to keep individual diversity and avoid premature convergence as well. Then DE/current-to-best/2/bin differentiation mode was employed to increase the convergence speed in the later iteration stage. Furthermore adaptive mechanism was introduced for differentiation constant to search the optimal solution more efficiently. Simulation results comparing with the traditional coverage-enhancing algorithms are performed to demonstrate the effectiveness of the proposed algorithm.
分 类 号:TP393.03[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38