检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北工业大学土木工程学院,天津300401 [2]清华大学水沙科学与水利水电工程国家重点实验室,北京100084
出 处:《混凝土》2016年第1期29-33,共5页Concrete
基 金:国家自然科学基金资助项目(51309073);高等学校博士学科点专项科研基金(20131317120012);河北省自然科学基金资助项目(E2014202257);清华大学水沙科学与水利水电工程国家重点实验室开放基金(sklhse-2014-C-02)
摘 要:基于采用起裂韧度扩展准则的三点弯曲梁断裂全过程数值模拟,研究了混凝土失稳韧度的预测方法及其受黏聚力分布的影响.该方法将起裂韧度作为裂缝起裂及扩展的判断标准,通过理论分析及数值迭代计算得到峰值荷载、临界有效裂缝长度及失稳韧度,摆脱了传统方法需要测量临界状态下的断裂参数才能得到失稳韧度的束缚.利用不同尺寸和不同最大骨料粒径的三点弯曲梁试验对本计算方法进行了验证.分析了不同黏聚力分布模型对失稳韧度及裂缝断裂全过程曲线的影响.研究表明本方法可以较好地预测混凝土失稳韧度,黏聚力分布模型对失稳韧度计算结果影响较小。Based on numerical simulation of whole fracture process of three-point bending notched beams by initial toughness criterion, the prediction of unstable toughness of concrete and the effects of cohesive distribution on it were studied. With initial toughness taken as the criterion of crack initiation and propagation, theoretical analysis and numerical iteration were used to calculate peak load, critical crack propagation length and the unstable toughness. This method avoided the measurement of parameters on critical situation and was verified by existing experimental data of different specimen sizes and different maximum aggregate sizes.Further, the effects of cohesive distribution on unstable toughness and the whole fracture process were analyzed. The results show that the proposed method can well predict unstable toughness of concrete and the calculated unstable toughness is not sensitive to cohesive distribution.
关 键 词:混凝土 三点弯曲梁 裂缝扩展 起裂韧度 失稳韧度 黏聚力
分 类 号:TU528.01[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195