Competition between Populus euphratica and Tamarix ramosissima seedlings under simulated high groundwater availability  被引量:4

Competition between Populus euphratica and Tamarix ramosissima seedlings under simulated high groundwater availability

在线阅读下载全文

作  者:WU Guilin JIANG Shaowei LIU Weiyang ZHAO Chengyi LI Jun 

机构地区:[1]State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]College of Plant Science,Tarim University,Alar 843300,China

出  处:《Journal of Arid Land》2016年第2期293-303,共11页干旱区科学(英文版)

基  金:funded by the National Basic Research Program of China(2013CB429903);the National Natural Science Foundation of China(41171037;41171095)

摘  要:Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known about the effects of high water availability on plant community structuring. We conducted a mesocosm experiment to test whether seedling competition under simulated high groundwater availability can explain the shift of co-dominance of Populus euphratica and Tamarix ramosissima in early communities to P. euphratica dominance in mature ones along the Tarim River in northwestern China. Seedlings of these two plant species were grown in monoculture and mixture pools with high groundwater availability. Results indicated that the above-ground biomass and relative yield of T. ramosissima were higher than those of P. euphratica. The competitive advantages of T. ramosissima included its rapid response in growth to groundwater enrichment and its water spender strategy, as evidenced by the increased leaf biomass proportion and the inert stomatal response to leaf-to-air vapor pressure deficit (VPD). In comparison, P. euphratica showed a conservative strategy in water use, with a sensitive response to leaf-to-air VPD. Result of the short-term competition was inconsistent with the long-term competition in fields, suggesting that competition exclusion is not the mechanism structuring the desert riparian plant communities. Thus, our research highlights the importance of mediation by environmental fluctuations (such as lessening competition induced by disturbance) in structuring plant communities along the Tarim riparian zones.Desert riparian plants experience high variability in water availability due to hydrological fluctuations. How riparian plants can survive with low water availability has been well studied, however, little is known about the effects of high water availability on plant community structuring. We conducted a mesocosm experiment to test whether seedling competition under simulated high groundwater availability can explain the shift of co-dominance of Populus euphratica and Tamarix ramosissima in early communities to P. euphratica dominance in mature ones along the Tarim River in northwestern China. Seedlings of these two plant species were grown in monoculture and mixture pools with high groundwater availability. Results indicated that the above-ground biomass and relative yield of T. ramosissima were higher than those of P. euphratica. The competitive advantages of T. ramosissima included its rapid response in growth to groundwater enrichment and its water spender strategy, as evidenced by the increased leaf biomass proportion and the inert stomatal response to leaf-to-air vapor pressure deficit (VPD). In comparison, P. euphratica showed a conservative strategy in water use, with a sensitive response to leaf-to-air VPD. Result of the short-term competition was inconsistent with the long-term competition in fields, suggesting that competition exclusion is not the mechanism structuring the desert riparian plant communities. Thus, our research highlights the importance of mediation by environmental fluctuations (such as lessening competition induced by disturbance) in structuring plant communities along the Tarim riparian zones.

关 键 词:community succession vapor pressure deficit (VPD) stomatal conductance riparian plant water usestrategy 

分 类 号:S792.12[农业科学—林木遗传育种] S793.5[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象