检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡晓媛[1] 吴娟[2] 孙庆文[3] 沙琨[4] 王玲玲[5] 李敏[1]
机构地区:[1]第二军医大学海军医学系航海特殊损伤防护教研室,上海200433 [2]成都军区总医院药剂科,成都610083 [3]第二军医大学基础部数理教研室,上海200433 [4]第二军医大学训练部信息化办公室,上海200433 [5]解放军309医院全军结核病研究所,北京100091
出 处:《第二军医大学学报》2016年第1期115-119,共5页Academic Journal of Second Military Medical University
基 金:中国博士后科学基金(2013M542491)~~
摘 要:目的比较自回归移动平均(ARIMA)模型与广义回归神经网络(GRNN)模型对于肺结核发病率的预测性能。方法根据我国2004年1月至2012年12月的肺结核逐月发病率数据资料,应用Eviews 7.0.0.1建立ARIMA模型,应用Matlab 7.1的神经网络工具箱建立GRNN模型;选取2013年肺结核逐月发病率数据对两种预测模型进行检验,比较预测结果。结果 ARIMA模型和GRNN模型的Theil不等系数(TIC)分别是0.034和0.059,说明ARIMA模型对我国2013年肺结核逐月发病率的拟合程度优于GRNN模型,ARIMA模型相对误差绝对值仅为GRNN模型的57.19%。结论 ARIMA预测模型更适合用于我国肺结核发病率的预测;建议尝试组合模型预测肺结核发病率。Objective To compare the performance of ARIMA model and GRNN model for predicting the incidence of tuberculosis. Methods ARIMA model was set up by Eviews 7.0. 0. 1 and GRNN model was set up by neural network toolbox of Matlab 7. 1 based on the monthly tuberculosis incidence data from January 2004 to December 2012 in China. Monthly tuberculosis incidence data in 2013 were subjected to the two models for testing, and the results were compared between the two groups. Results The Theil unequal coefficients (TIC) were 0. 034 and 0. 059 for ARIMA model and GRNN model, respectively, indicating that ARIMA model was better than GRNN model to fit with the monthly incidence of tuberculosis in 2013. The absolute value of the relative error for ARIMA model was only 57. 19% of GRNN model. Conclusion ARIMA prediction model is more suitable for predicting the incidence of tuberculosis in China, and it is suggested a combination of models should be used to predict the incidence of tuberculosis.
关 键 词:回归移动平均模型 广义回归神经网络模型 肺结核 预测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222