检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学电子与信息学院,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2016年第1期1-8,共8页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(61471173)~~
摘 要:现有的视频压缩感知(CVS)多假设预测方法均以当前块在参考帧对应搜索范围内的所有搜索块为假设块,造成求解线性权值系数的计算复杂度过高和预测精度受限.针对该问题,文中提出了一种基于多参考帧的最优多假设预测视频压缩感知重构算法.该算法首先从多个参考帧中选取出与当前块测量域绝对差值和(SAD)最小的一部分搜索块作为当前块的最优假设块集,然后对假设块进行自适应线性加权,充分地挖掘视频帧间相关信息,提升了预测精度,同时降低了求解线性权值系数的计算复杂度;最后对测量值进行帧间DPCM量化,以提高视频压缩效率和率失真性能.仿真实验表明,与现有的视频压缩感知重构算法相比,文中算法具有更高的视频重构质量.The existing multi-hypothesis prediction methods for compressed video sensing ( CVS) select all possible blocks within the search space of reference frames as the hypotheses, which causes a high computation load in sol-ving linear weighting coefficients and impairs prediction accuracy.To address this issue, a multi-reference frames-based optimal multi-hypothesis prediction algorithm for CVS reconstruction is proposed in this paper.In the algo-rithm, first, those search blocks which have the smallest sum of absolute differences ( SAD) from current block in measurement domain are selected from multi-reference frames as the optimal hypotheses of current block.Then, the hypotheses are weighted both linearly and adaptively to fully excavate the temporal correlation between video frames.Thus, the prediction accuracy is improved and the computation load in solving linear weighting coefficients is reduced.Finally, the compressed sensing measurements are quantized through the frame-based DPCM quantiza-tion to improve video compression efficiency and rate-distortion performance.Simulation results show that, in com-parison with the existing CVS reconstruction algorithms, the proposed algorithm achieves higher video reconstruction quality.
分 类 号:TN919.8[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7