检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学机械与汽车工程学院,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2016年第1期85-92,共8页Journal of South China University of Technology(Natural Science Edition)
基 金:国家"863"计划项目(2012AA040909)~~
摘 要:当对非均匀有理B样条(NURBS)曲线进行高密度插值时,运用分段幂函数方法对基函数进行求值的效率远高于传统的de-Boor算法.为此,文中从NURBS插补计算的特点出发,结合de-Boor递推计算规律,设计了NURBS插补快速求值算法.首先采用该算法计算NURBS在各节点区间的基函数显式方程,再运用显式方程进行NURBS插补点求值,并设计相应的NURBS曲线插补器.复杂NURBS曲线的铣削加工实验结果表明,该算法能够有效地缩减NURBS曲线插补求值的计算耗时,提高插补计算的实时性.In the high-density interpolation of non-uniform rational B-spline ( NURBS) curves, using the piecewise power function method to evaluate the B-spline basis function consumes much less computing time than the tradi-tional de-Boor algorithm.Therefore, on the basis of the characteristic of the NURBS interpolation, an efficient eva-luation algorithm for the NURBS interpolation is proposed by drawing on the recursive calculation laws of the de-Boor algorithm.First, the proposed algorithm is used to deduce the explicit equations of the B-spline basis function in each spline parameter knot interval.Then, NURBS interpolation points are evaluated by using explicit equa-tions, and a corresponding NURBS curve interpolator is designed.The results of the milling experiment with com-plex NURBS curves show that the proposed algorithm can effectively reduce the computing time of the NURBS curve interpolation and can improve the real-time performance of NURBS interpolators.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.191