检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海南大学信息科学技术学院,海南海口570228
出 处:《海南大学学报(自然科学版)》2015年第4期305-309,共5页Natural Science Journal of Hainan University
摘 要:设I是可解多项式代数A=K[a_1,…,a_n]的一个非零左理想,由可解多项式代数上的左Grbner基性质,可知A中任何一个左理想对于一个单项式序的左Grbner基不一定满足另一个单项式序.首先证明了在B上的任意2个单项式序<1,<2下,g={g1,g2,…,gt}是I在<1下的左Grbner基,若LM<1(gi)=LM<2(gi),1≤i≤t,那么g={g1,g2,…,gt}也是I在<2下的左Grbner基;其次证明了I在A上的所有单项式序(可能无限个)下只有有限个约化左Grbner基;最后证明了A中的一个子集F,对于其上的任何一个单项式序,都是I的左Grbner基,子集F就是A的泛左Grbner基.In the report,let I be a nonzero left ideal of a solvable polynomial algebra A = K[a1,…,an],based on the property of left Grobher of the solvable polynonlial algebra,we know that a len Grobner bases with respect to one monomial ordering might not be a left Grobner bases with respect to another monomial ordering. First,it was proved that〈 1,〈2,B,g = { g1,g2,…,gt},is the left Grobher bases of I with respect to 〈1,if LM〈1( gi) =LM〈2( gi),1≤i≤t,then g = { g1,g2,…,gt} is also the left Grobher bases of I with respect to 〈2; Second,it was proved that there are only finitely many possible reduced left Grobner bases for a given left ideal; Last,a subset of A,f,is a left Grobner bases with respect to every ordering,and which is called a universal left Grobner bases of A.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.72.31