检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学力学与土木建筑学院,西安710072
出 处:《振动与冲击》2016年第1期132-140,共9页Journal of Vibration and Shock
基 金:国家自然科学基金(11172234)资助
摘 要:针对以往研究过程中忽略质量块惯性和声源激励对板动态响应的影响,在考虑质量块惯性对板的影响基础上,采用哈密顿原理和Kronecke δ函数建立板在动质量块和声源激励共同作用下的运动微分方程,再采用模态变换将运动微分方程进行解耦,然后采用微分求积法(DQM)求解系统动态响应。数值算例结果表明:相比Runge-Kutta算法,取样网点较少时,DQM得到的动态响应值精度更高。动质量块的质量、移动速度和阻尼系数及声激励的声频和声强对矩形薄板的动态响应曲线具有明显的影响。Aiming at that in the past studies the effects of mass inertia and sound source excitation on dynamic responses of a plate were ignored, here the differential equations of motion for a plate under action of moving mass and sound source excitation were established using Hamilton's principle and kronecke ~ function. The differential equations of motion were decoupled using the modal transformation, then they were solved with the differential quadrature method (DQM). The numerical results showed that DQM has a higher accuracy for the dynamic responses of the plate than Runge-Kutta algorithm does when the number of grid points is small; the moving mass, moving speed, damping, and acoustic excitation frequency and intensity have significant imoacts on the dynamic responses of the plate.
分 类 号:O321[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3