基于振动传递率函数与统计假设检验的海洋平台结构损伤识别研究  被引量:9

Structural damage identification of offshore platform based on the vibration transmissibility function and statistical hypothesis testing

在线阅读下载全文

作  者:刁延松[1,2] 徐东锋[1] 徐菁[1,2] 毛辉[1,2] 

机构地区:[1]青岛理工大学士工程学院,山东青岛266033 [2]山东省蓝色经济区工程建设与安全协同创新中心,山东青岛266033

出  处:《振动与冲击》2016年第2期218-222,共5页Journal of Vibration and Shock

基  金:国家自然科学基金(51179082);山东省蓝色经济区工程建设与安全协同创新中心

摘  要:由于受激励未知、测量噪声及建模误差等因素影响,基于振动的结构损伤识别结果存在明显不确定性。为此,利用振动传递率函数和统计假设检验进行结构损伤识别研究。用结构损伤前后加速度响应计算振动传递率函数;用主成分分析(Principal Component Analysis,PCA)提取结构损伤前后振动传递率函数的第一阶主成分作为正态总体样本;用多元统计分析中F检验法进行假设检验分析以达损伤识别目的。该方法无需激励信息,具有一定抗噪声能力,适合处理激励未知、测量噪声等因素引起的不确定性问题。通过海洋平台结构数值模拟及振动台模型试验验证该方法的可行性。The results of the structural damage identification based on vibration have obvious uncertainty because of the influences of unknown excitation, measurement noise and modeling error. and statistical hypothesis testing methods were utilized to identify the structural before and component component Here, the vibration transmissibility function damage. Firstly, the acceleration responses after the structural damage were used to calculate the vibration transmissibility function. Then the first principal of vibration transmissibility function before and after the structural damage was extracted with principal analysis (PCA), which was treated as a sample of normal population. Finally, the F-test of multivariate statistical analysis was employed for hypothesis testing analysis to achieve the purpose of damage identification. This method does not need information of excitation and is able to resist noise, it' s suitable for handling uncertain problems resulting from unknown excitation and measurement noise. The numerical simulation of an offshore platform structure and the shaking table model test showed that the proposed method is feasible.

关 键 词:损伤识别 传递率函数 主成分分析 海洋平台 假设检验 

分 类 号:TU312.3[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象