检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学通信与信息工程学院,上海200444 [2]新型显示技术及应用集成教育部重点实验室,上海200072
出 处:《光电子.激光》2015年第12期2375-2380,共6页Journal of Optoelectronics·Laser
基 金:国家自然科学基金(11176016;60872117);高等学校博士学科点专项科研基金(20123108110014)资助项目
摘 要:为了有效实现视频异常行为的自动识别,基于动态粒子流场,将视频运动对象的运动行为,映射为有效反映其运动变化状态的动态粒子流,同时提取度量不同场景内容下的运动方式各异的异常行为的显著性运动特征,进行异常行为的分类与识别。对来自不同场景并具有不同运动行为方式的公开视频测试序列的实验表明,本文方法无需跟踪运动对象,也无需预先采集异常行为样本进行学习与训练,可在多种条件下实现视频运动对象异常行为的有效自动识别。How to efficiently realize automatic recognition of abnormal behavior for intelligent video surveillance is a key problem. A method has been developed that the dynamic particle flow field from video is got based on the Lagrange dynamic system equation and self-adaptive determination of time interval in the equation. Some motion behaviors for motion objects in video are mapped to the dynamic particle flows which can be used to describe their motion variation states. Some significant motion features for abnormal behavior with different motion styles from different scenes have been extracted to classify and recognize the abnormal behaviors. Some open video test sequences from different scenarios with different behavioral patterns are selected to perform experimental verifications and comparisons. Experimental results show that abnormal behavior can be automatically recognized efficiently in various conditions where it is not necessary to track motion object or collect abnormal behavior sample in advance for learning and training.
关 键 词:动态粒子流场 异常行为识别 显著性特征提取 智能视频监控
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166