Spindown of magnetars:quantum vacuum friction?  

Spindown of magnetars:quantum vacuum friction?

在线阅读下载全文

作  者:Xue-Yu Xiong Chun-Yuan Gao Ren-Xin Xu 

机构地区:[1]School of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University

出  处:《Research in Astronomy and Astrophysics》2016年第1期73-78,共6页天文和天体物理学研究(英文版)

基  金:supported by the National Natural Science Foundation of China (11225314);XTP XDA04060604;Sino Probe-09-03 (201311194-03)

摘  要:Magnetars are proposed to be peculiar neutron stars which could power their X-ray radiation by super-strong magnetic fields as high as 〉 10^(14) G.However,no direct evidence for such strong fields has been obtained till now,and the recent discovery of low magnetic field magnetars even indicates that some more efficient radiation mechanism than magnetic dipole radiation should be included.In this paper,quantum vacuum friction(QVF) is suggested to be a direct consequence of super-strong surface fields,therefore the magnetar model could then be tested further through QVF braking.The high surface magnetic field of a pulsar interacting with the quantum vacuum results in a significantly high spindown rate(P).It is found that a QVF dominates the energy loss of pulsars when the pulsar's rotation period and its first derivative satisfy the relationship P^3P 〉 0.63 ×10^(-16)ξ^(-4) s^2,whereξ is the ratio of the surface magnetic field over the dipole magnetic field.In the "QVF + magnetodipole" joint braking scenario,the spindown behavior of magnetars should be quite different from that in the pure magnetodipole model.We are expecting these results could be tested by magnetar candidates,especially low magnetic field cases,in the future.Magnetars are proposed to be peculiar neutron stars which could power their X-ray radiation by super-strong magnetic fields as high as 〉 10^(14) G.However,no direct evidence for such strong fields has been obtained till now,and the recent discovery of low magnetic field magnetars even indicates that some more efficient radiation mechanism than magnetic dipole radiation should be included.In this paper,quantum vacuum friction(QVF) is suggested to be a direct consequence of super-strong surface fields,therefore the magnetar model could then be tested further through QVF braking.The high surface magnetic field of a pulsar interacting with the quantum vacuum results in a significantly high spindown rate(P).It is found that a QVF dominates the energy loss of pulsars when the pulsar's rotation period and its first derivative satisfy the relationship P^3P 〉 0.63 ×10^(-16)ξ^(-4) s^2,whereξ is the ratio of the surface magnetic field over the dipole magnetic field.In the "QVF + magnetodipole" joint braking scenario,the spindown behavior of magnetars should be quite different from that in the pure magnetodipole model.We are expecting these results could be tested by magnetar candidates,especially low magnetic field cases,in the future.

关 键 词:ulsars: general -- radiation: dynamics -- stars: magnetars -- stars: neutron 

分 类 号:P145.6[天文地球—天体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象