Helmholtz水声换能器弹性壁液腔谐振频率研究  被引量:14

Study on elastic-wall fluid cavity resonant frequency of Helmholtz underwater acoustic transducer

在线阅读下载全文

作  者:桑永杰[1,2] 蓝宇[1,2] 丁玥文 

机构地区:[1]哈尔滨工程大学水声技术重点实验室,哈尔滨150001 [2]哈尔滨工程大学水声工程学院,哈尔滨150001

出  处:《物理学报》2016年第2期182-189,共8页Acta Physica Sinica

基  金:国家自然科学基金(批准号:11304057)资助的课题~~

摘  要:针对传统Helmholtz水声换能器设计中刚性壁假设的局限性,将Helmholtz腔体的弹性计入到液腔谐振频率计算中,实现低频弹性Helmholtz水声换能器液腔谐振频率精确设计.基于细长圆柱壳腔体的低频集中参数模型,导出了腔体弹性引入的附加声阻抗表达式,得到了弹性壁条件下Helmholtz水声换能器等效电路图,给出了考虑了末端修正的弹性壁Helmholtz共振腔液腔谐振频率计算公式.利用ANSYS软件建立了算例模型,仿真分析了不同材质、半径、长度时的Helmholtz共振腔液腔谐振频率.结果对比表明弹性理论值与仿真值符合得很好,相比起传统的刚性壁理论计算结果,本文的弹性壁理论得出的液腔谐振频率值有所降低,与真实情况更加接近.本文的结论可以为精确设计低频弹性Helmholtz水声换能器提供理论支持.Helmholtz resonators are commonly used as underwater acoustic transducers to transmit low-frequency, great power acoustic waves at fluid cavity resonant frequency. Therefore, it is an important problem in the study of how to calculate accurately the fluid cavity resonant frequency of Helmholtz resonator, especially when the Helmholtz resonator is used in underwater acoustic environment where Helmholtz transducers cannot be designed using the classical air acoustic Helmholtz resonator theory. The elasticity of the cavity wall has to be considered because it has a strong influence on the fluid cavity resonant frequency at low frequency band. In this paper, the method of calculating accurately fluid cavity resonant frequency is researched for low-frequency Helmholtz underwater transducers. A Helmholtz resonator is a slender cylindrical shell, the boundary condition of its two ends is free: one side is a radiating port, and the other side is considered as a rigid baffle. Firstly, the fluid cavity resonant frequency of the rigid wall Helmholtz resonator is given, then the radial mechanical impedance of the slender cylindrical shell is derived based on the wave equations. Elasticity of the cavity wall is introduced into the acoustic impedance of fluid cavity in the form of additional impedance. Based on the low-frequency lumped parameter model of the slender cylindrical shell, additional acoustic impedance expression of elastic cavity wall is derived, complete equivalent circuit diagram of elastic Helmholtz underwater transducers is developed, taking into account the elasticity of the cavity wall. Based on the equivalent circuit, the accurate fluid cavity resonant frequency formula has been derived; the formula shows that both the structure size and material characteristics of the cavity wall have influence on the fluid cavity resonant frequency. The thinner the cavity wall, the lower the fluild cavity resonant frequency; and the smaller the Young's modulus of the material, the lower the fluild cavity resonant freq

关 键 词:弹性Helmholtz共振腔 水声换能器 液腔谐振频率 声阻抗 

分 类 号:TB565.1[交通运输工程—水声工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象