Bandgap narrowing in the layered oxysulfide semiconductor Ba_3Fe_2O_5Cu_2S_2: Role of FeO_2 layer  

Bandgap narrowing in the layered oxysulfide semiconductor Ba_3Fe_2O_5Cu_2S_2: Role of FeO_2 layer

在线阅读下载全文

作  者:张韩 金士锋 郭丽伟 申士杰 林志萍 陈小龙 

机构地区:[1]Research and Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences [2]Collaborative Innovation Center of Quantum Matter, Beijing, China Research & Development Center for Functional Crystals,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences

出  处:《Chinese Physics B》2016年第2期306-311,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.51472266,51202286,and 91422303);the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020100);the ICDD

摘  要:A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers and iron perovskite oxide[(FeO_2)(BaO)(FeO_2)]^(2-)layers along the c axis that are separated by barium ions with Fe^(3+) fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuC h-based(Ch =S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba_3Fe_2O_5Cu_2S_2 is an antiferromagnetic semiconductor with a Ne′el temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3 d states of Fe ions that antiferromagnetically arranged in FeO_2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr_3Sc_2O_5Cu_2S_2.A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers and iron perovskite oxide[(FeO_2)(BaO)(FeO_2)]^(2-)layers along the c axis that are separated by barium ions with Fe^(3+) fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuC h-based(Ch =S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba_3Fe_2O_5Cu_2S_2 is an antiferromagnetic semiconductor with a Ne′el temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3 d states of Fe ions that antiferromagnetically arranged in FeO_2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr_3Sc_2O_5Cu_2S_2.

关 键 词:oxychalcogenides SEMICONDUCTOR ANTIFERROMAGNETIC bandgap narrowing 

分 类 号:TN304.2[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象