Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskite ABX_3 from first-principles study  

Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic–organic perovskite ABX_3 from first-principles study

在线阅读下载全文

作  者:陈清源 黄杨 黄鹏儒 马泰 曹超 何垚 

机构地区:[1]Department of Physics, Yunnan University [2]Department of Physics, Hangzhou Normal University

出  处:《Chinese Physics B》2016年第2期393-398,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.61366007,11164032,and 61066005);the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-12-1080);the Basic Applied Research Foundation of Yunnan Province,China(Grant Nos.2011CI003 and 2013FB007);the Excellent Young Talents in Yunnan University,China

摘  要:Organic–inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX_3(A = CH_3NH_3; B = Sn,Pb; X = Cl, Br, I) and provide the best absorber among ABX_3 when the organic framework A is CH_3NH_3 by first-principles calculations. The results reveal that the valence band maximum(VBM) of the ABX_3 is mainly composed of anion X p states and that conduction band minimum(CBM) of the ABX_3 is primarily composed of cation B p states. The bandgap of the ABX_3 decreases and the absorptive capacities of different wavelengths of light expand when reducing the size of the organic framework A, changing the B atom from Pb to Sn, and changing the X atom from Cl to Br to I. Finally, based on our calculations, it is discovered that CH_3NH_3 Sn I_3has the best optical properties and its light-adsorption range is the widest among all the ABX_3 compounds when A is CH_3NH_3. All these results indicate that the electronegativity difference between X and B plays a fundamental role in changing the energy gap and optical properties among ABX_3 compounds when A remains the same and that CH_3NH_3 Sn I_3 is a promising perovskite absorber in the high efficiency solar batteries among all the CH_3NH_3BX_3 compounds.Organic–inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX_3(A = CH_3NH_3; B = Sn,Pb; X = Cl, Br, I) and provide the best absorber among ABX_3 when the organic framework A is CH_3NH_3 by first-principles calculations. The results reveal that the valence band maximum(VBM) of the ABX_3 is mainly composed of anion X p states and that conduction band minimum(CBM) of the ABX_3 is primarily composed of cation B p states. The bandgap of the ABX_3 decreases and the absorptive capacities of different wavelengths of light expand when reducing the size of the organic framework A, changing the B atom from Pb to Sn, and changing the X atom from Cl to Br to I. Finally, based on our calculations, it is discovered that CH_3NH_3 Sn I_3has the best optical properties and its light-adsorption range is the widest among all the ABX_3 compounds when A is CH_3NH_3. All these results indicate that the electronegativity difference between X and B plays a fundamental role in changing the energy gap and optical properties among ABX_3 compounds when A remains the same and that CH_3NH_3 Sn I_3 is a promising perovskite absorber in the high efficiency solar batteries among all the CH_3NH_3BX_3 compounds.

关 键 词:ABX3 efficiency-enhancing mechanism of ABX3 optical and electronic properties hybrid per-ovskite solar cells 

分 类 号:TM914.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象