Properties of n-type SnO_2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications  被引量:1

Properties of n-type SnO_2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications

在线阅读下载全文

作  者:H.Bendjedidi A.Attaf H.Saidi M.S.Aida S.Semmari A.Bouhdjar Y.Benkhetta 

机构地区:[1]Laboratoire de Physique des Couches Minces et Applications, Université de Biskra [2]Laboratoire des Couches minces et Interfaces, Université Mentouri

出  处:《Journal of Semiconductors》2015年第12期34-37,共4页半导体学报(英文版)

摘  要:Transparent conducting n-type SnO2 semiconductor films were fabricated by employing an inexpensive, simplified spray ultrasonic technique using an ultrasonic generator at deferent substrate temperatures (300, 350, 400, 450 and 500 ℃). The structural studies reveal that the SnO2 films are polycrystalline at 350,400, 450, 500 ℃ with preferential orientation along the (200) and (101) planes, and amorphous at 300 ℃. The crystallite size of the films was found to be in the range of 20.9-72.2 nm. The optical transmittance in the visible range and the optical band gap are 80% and 3.9 eV respectively. The films thicknesses were varied between 466 and 1840 nm. The resistivity was found between 1.6 and 4 × 10^-2 Ω.cm. This simplified ultrasonic spray technique may be considered as a promising alternative to a conventional spray for the massive production of economic SnO2 films for solar cells, sensors and opto-electronic applications.Transparent conducting n-type SnO2 semiconductor films were fabricated by employing an inexpensive, simplified spray ultrasonic technique using an ultrasonic generator at deferent substrate temperatures (300, 350, 400, 450 and 500 ℃). The structural studies reveal that the SnO2 films are polycrystalline at 350,400, 450, 500 ℃ with preferential orientation along the (200) and (101) planes, and amorphous at 300 ℃. The crystallite size of the films was found to be in the range of 20.9-72.2 nm. The optical transmittance in the visible range and the optical band gap are 80% and 3.9 eV respectively. The films thicknesses were varied between 466 and 1840 nm. The resistivity was found between 1.6 and 4 × 10^-2 Ω.cm. This simplified ultrasonic spray technique may be considered as a promising alternative to a conventional spray for the massive production of economic SnO2 films for solar cells, sensors and opto-electronic applications.

关 键 词:tin oxide thin films spray ultrasonic structural properties optical properties 

分 类 号:TN304.2[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象