Metal-catalyzed growth of In_2O_3 nanotowers using thermal evaporation and oxidation method  

Metal-catalyzed growth of In_2O_3 nanotowers using thermal evaporation and oxidation method

在线阅读下载全文

作  者:刘剑 黄仕华 何绿 

机构地区:[1]Physics Department, Zhejiang Normal University

出  处:《Journal of Semiconductors》2015年第12期62-67,共6页半导体学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.61076055);the Open Project Program of Surface Physics Laboratory(National Key Laboratory)of Fudan University(No.KF2015_02);the Zhejiang Provincial Science and Technology Key Innovation Team(No.2011R50012);the Zhejiang Provincial Key Laboratory(No.2013E10022)

摘  要:Large-scale In2O3 nanotowers with different cross sections were synthesized by a thermal evaporation and oxidation technique using metal as the catalyst. The morphologies and structural characterizations of In2O3 nanotowers are dependent on growth processes, such as different metal (Au, Ag or Sn) catalysts, the relative position of the substrate and evaporation source, growth temperature, gas flow rate, and growth time. In2O3 nanotowers cannot be observed using Sn as the catalyst, which indicates that metal liquid droplets play an important role in the initial stages of the growth of In2O3 nanotowers. The formation of an In2O3 nanotower is attributed to the competitive growth model between a lateral growth controlled by vapor-solid mechanism and an axial vaporliquid-solid growth mechanism mediated by metal liquid nanodroplets. The synthesized In2O3 nanostructures with novel tower-shaped morphology may have potential applications in optoelectronic devices and gas sensors.Large-scale In2O3 nanotowers with different cross sections were synthesized by a thermal evaporation and oxidation technique using metal as the catalyst. The morphologies and structural characterizations of In2O3 nanotowers are dependent on growth processes, such as different metal (Au, Ag or Sn) catalysts, the relative position of the substrate and evaporation source, growth temperature, gas flow rate, and growth time. In2O3 nanotowers cannot be observed using Sn as the catalyst, which indicates that metal liquid droplets play an important role in the initial stages of the growth of In2O3 nanotowers. The formation of an In2O3 nanotower is attributed to the competitive growth model between a lateral growth controlled by vapor-solid mechanism and an axial vaporliquid-solid growth mechanism mediated by metal liquid nanodroplets. The synthesized In2O3 nanostructures with novel tower-shaped morphology may have potential applications in optoelectronic devices and gas sensors.

关 键 词:In2O3 nanotower metal-catalyzed growth thermal evaporation and oxidation VLS growth mecha nism 

分 类 号:TN304.2[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象