严格直觉模糊熵  被引量:2

Strict intuitionistic fuzzy entropy

在线阅读下载全文

作  者:范晓诗[1] 雷英杰[1] 李成海[1] 郭新鹏[1] 

机构地区:[1]空军工程大学防空反导学院,陕西西安710051

出  处:《系统工程与电子技术》2016年第3期602-606,共5页Systems Engineering and Electronics

基  金:国家自然科学基金(61272011);陕西省自然科学青年基金(2013JQ8031)资助课题

摘  要:通过对现有直觉模糊熵构造方法的分析,针对隶属度和非隶属度函数相等但直觉指数不同导致熵值无法区分的局限性,借鉴经典数学中严格大于和严格小于的概念,提出了严格直觉模糊熵(strict intuitionistic fuzzy entropy,SIFE)的概念并给出公理化定义。在该定义基础上给出一个SIFE构造方法,然后抽象为一般表达式,使得SIFE的特性在决策排序问题中更加适用。通过算例分析,表明该方法的正确性,与其他直觉模糊熵构造方法比较,说明该方法可以克服存在的局限性。Methods of intuitionistic fuzzy entropy are analyzed.Considering the classical mathematic concepts of strict greater-than and strict less-than,a concept strict intuitionistic fuzzy entropy(SIFE)and an axiomatic definition are proposed by solving defect that entropy of the degree of membership function equals the degree of none-membership function but different intuitionistic indexes cannot be distinguished.A technique for constructing the SIFE based on this definition is proposed and an expression is abstracted.The SIFE is more adaptive in decision and sorting.The validity is certified by the example and the limit is overcomed by comparing to other methods.

关 键 词:直觉模糊集 直觉指数 严格直觉模糊熵 决策 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象