机构地区:[1]School of Municipal and Environmental Engineering, School of Life Science and Technology, Harbin Institute of Technology [2]College of Engineering, Peking University Third Hospital,Peking University
出 处:《Science Bulletin》2016年第2期148-156,共9页科学通报(英文版)
基 金:supported by the National Natural Science Foundation of China(81371580 and 21273014);the National Natural Science Foundation for Distinguished Young Scholars(81225011);the State Key Program of National Natural Science of China(81230036)
摘 要:By adsorbing chitosan(CS)-functionalized Prussian blue(PB) nanoparticles(CS/PB NPs) complexing DNA onto the surface of gas encapsulated microbubbles(MBs), a multifunctional gene delivery system of MBs@CS/PB/DNA was fabricated for photothermally enhanced gene transfection through ultrasound-targeted microbubble destruction. CS/PB NPs of(2.69 ± 0.49) nm could complex DNA effectively when the mass ratio was2:1. It was found that MBs@CS/PB/DNA could enhance ultrasound imaging greatly both in vitro and in vivo. In addition, MBs@CS/PB/DNA could be disrupted by applying a higher-intensity ultrasound irradiation to release CS/PB/DNA, which could effectively transform the nearinfrared(NIR) light into heat to assist the uptake of CS/PB/DNA by cells. With the aid of ultrasound irradiation and NIR light irradiation, the gene transfection efficiency was significantly enhanced to(43.08 ± 1.13) %, much higher than polyethylenimine. Moreover, MBs@CS/PB/DNA showed excellent biocompatibility, encouraging the further exploration of MBs@CS/PB/DNA to be a platform for combined ultrasound image, photothermal therapy, drug delivery, and gene therapy.By adsorbing chitosan (CS)-functionalized Prussian blue (PB) nanoparticles (CS/PB NPs) complexing DNA onto the surface of gas encapsulated microbubbles (MBs), a multifunctional gene delivery system of MBs@CS/PB/DNA was fabricated for photothermally enhanced gene transfection through ultrasound-targeted microbubble destruction. CS/PB NPs of (2.69 ± 0.49) nm could complex DNA effectively when the mass ratio was 2:1. It was found that MBs@CS/PB/DNA could enhance ultrasound imaging greatly both in vitro and in vivo. In addition, MBs@CS/PB/DNA could be disrupted by applying a higher-intensity ultrasound irradiation to release CS/PB/DNA, which could effectively transform the near- infrared (NIR) light into heat to assist the uptake of CS/PB/ DNA by cells. With the aid of ultrasound irradiation and NIR light irradiation, the gene transfection efficiency was significantly enhanced to (43.08 ± 1.13) %, much higher than polyethylenimine. Moreover, MBs@CS/PB/DNA showed excellent biocompatibility, encouraging the further exploration of MBs@CS/PB/DNA to be a platform for combined ultrasound image, photothermal therapy, drug delivery, and gene therapy.
关 键 词:Ultrasound imaging MicrobubbleGene delivery Prussian blue nanoparticle
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...