Development and test of a multifactorial parameterization scheme of land surface aerodynamic roughness length for flat land surfaces with short vegetation  被引量:3

Development and test of a multifactorial parameterization scheme of land surface aerodynamic roughness length for flat land surfaces with short vegetation

在线阅读下载全文

作  者:ZHANG Qiang YAO Tong YUE Ping 

机构地区:[1]Institute of Arid Meteorology of CMA [2] Key Laboratory of Arid Climatic Change and Disaster Reduction of Gansu Province Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Lanzhou 730020, China [2]Meteorological Bureau of Gansu, Lanzhou 730020, China [3]College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

出  处:《Science China Earth Sciences》2016年第2期281-295,共15页中国科学(地球科学英文版)

基  金:supported by State Key Program of National Natural Science Foundation of China(Grant No.40830957)

摘  要:Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only con- sider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux (friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windrow conditions, thermodynamic characteristics of the sur- face layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that af- fect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aero- dynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 m s-l and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux.Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and micrometeorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only consider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux(friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windflow conditions, thermodynamic characteristics of the surface layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that affect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aerodynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 ms^(-1) and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux. The test resu

关 键 词:Flat land surface with short vegetation Multifactorial influence Aerodynamic roughness length Parameterizationscheme Friction velocity 

分 类 号:P433[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象