检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Benton Donovan J. Iverson Stephen R. Martin Lewis A. Johnson Jeffrey C. Raffaldi Michael J.
机构地区:[1]National Institute for Occupational Safety and Health. Spokane 99207, USA
出 处:《International Journal of Mining Science and Technology》2016年第1期123-130,共8页矿业科学技术学报(英文版)
摘 要:NIOSH ground control safety research program at Spokane,Washington,is exploring applications of photogrammetry to rock mass and support monitoring. This paper describes two ways photogrammetric techniques are being used. First,photogrammetric data of laboratory testing is being used to correlate energy input and support deformation. This information can be used to infer remaining support toughness after ground deformation events. This technique is also demonstrated in a field application.Second,field photogrammetric data is compared to crackmeter data from a deep underground mine.Accuracies were found to average 8 mm,but have produced results within 0.2 mm of true displacement,as measured by crackmeters. Application of these techniques consists of monitoring overall fault activity by monitoring multiple points around the crackmeter. A case study is provided in which a crackmeter is clearly shown to have provided insufficient information regarding overall fault ground deformation.Photogrammetry is proving to be a useful ground monitoring tool due to its unobtrusiveness and ease of use.NIOSH ground control safety research program at Spokane, Washington, is exploring applications of pho- togrammetry to rock mass and support monitoring. This paper describes two ways photogrammetric techniques are being used. First, photogrammetric data of laboratory testing is being used to correlate energy input and support deformation. This information can be used to infer remaining support toughness after ground deformation events. This technique is also demonstrated in a field application. Second, field photogrammetric data is compared to crackmeter data from a deep underground mine. Accuracies were found to average 8 mm, but have produced results within 0.2 mm of true displacement, as measured by crackmeters. Application of these techniques consists of monitoring overall fault activity by monitoring multiple points around the crackmeter. A case study is provided in which a crackmeter is clearly shown to have provided insufficient information regarding overall fault ground deformation. Photogrammetry is proving to be a useful ground monitoring tool due to its unobtrusiveness and ease of use.
关 键 词:PhotogrammetryGround controlMonitoringDeep vein miningVolume calculationCrackmeter
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117