检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101 [2]中国科学院大学,北京100049
出 处:《地球信息科学学报》2016年第2期151-159,共9页Journal of Geo-information Science
基 金:国家高技术发展研究计划"863"项目(2013AA12A204;2013AA122302)
摘 要:快速高效地查询信息是衡量当前空间数据库性能的重要指标之一。传统的单节点关系型空间数据管理方式难以满足大数据量空间数据查询的需求,特别是高性能的复杂空间多表连接任务需求。鉴此,本文设计并实现了基于Massive Parallel Processing(MPP)架构的并行空间数据库中间件原型系统。系统充分利用无共享(shared-nothing)架构的优势,特别是针对空间数据的特性,设计了并行空间数据划分与导入、并行空间多表连接、空间数据查询优化等算法与模型。首先介绍了近年来并行数据库系统的发展现状,接着阐述了基于MPP架构的并行空间数据库中间件系统的查询计划算法及其系统架构,最后作者对一些大规模数据量做查询实验及其查询结果分析。实验表明,在处理挖掘大规模数据量时,该系统有近似线性的加速比,相比于传统单节点数据库,它能充分提高海量空间数据的复杂查询的性能,解决了空间数据库并行化处理海量数据的问题。The efficiency for querying complex spatial information resources is an important indicator to evaluate the performance of current spatial databases. Traditional single node relation spatial data management is difficult to meet the demand of highperformance in querying large amounts of spatial data, especially for the complex join query on multi-table. In order to solve this problem, we design and implement a spatial database middleware prototype system. This system takes full advantages of the massive parallel processing(MPP) and shared-nothing architecture. In consideration of the characteristics of spatial data, we design the spatial data parallel import, multi-spatial-tables join strategy, spatial data query optimization and other algorithms and models.This paper firstly introduces the development status of parallel database systems in recent years, and then elaborates its MPP architecture and its organizational model, and the strategy of the join query on multi-spatial-table. Finally, we made some query experiments on massive spatial data and analyzed the results of these inquiries. The experimental results show that this system indicates a good performance(nearly linear speedup) in processing the complex query of massive spatial data. Compared with the tradition single node database, this system can fully improve the efficiency of complex querying for large spatial data, and it is a more efficient solution to solve the complex spatial data queries.
关 键 词:MPP 空间数据库 并行 SHARED NOTHING
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222