Second-order two-scale computational method for ageing linear viscoelastic problem in composite materials with periodic structure  

Second-order two-scale computational method for ageing linear viscoelastic problem in composite materials with periodic structure

在线阅读下载全文

作  者:Yang ZHANG Junzhi CUI Yufeng NIE 

机构地区:[1]Department of Applied Mathematics, Northwestern Polytechnical University [2]Academy of Mathematics and Systems Science, Chinese Academy of Sciences

出  处:《Applied Mathematics and Mechanics(English Edition)》2016年第2期253-264,共12页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.11471262)

摘  要:The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.

关 键 词:second-order two-scale (SOTS) method ageing VISCOELASTICITY composite material periodic structure 

分 类 号:O344[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象