基于聚类的邻域检测器生成算法  被引量:2

Neighborhood Detector Generation Algorithm Based on Clustering

在线阅读下载全文

作  者:张凤斌[1] 杨泽[1] 葛海洋[1] 

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080

出  处:《计算机工程》2016年第2期131-136,共6页Computer Engineering

基  金:国家自然科学基金资助项目"免疫动态自适应机制研究"(61172168)

摘  要:邻域否定选择算法遍历每个自体样本,导致计算量大及匹配阶段重叠率高等问题。为此,对邻域否定选择算法和聚类技术进行研究,提出一种邻域检测器生成算法。将自体样本映射到构建好的邻域空间中进行聚类,同时对随机检测器予以耐受,训练出成熟的邻域检测器。在KDD CUP 1999数据集上的仿真结果表明,该算法可以缩短生成检测器的时间,有效解决高重叠问题,提高检测效率。Neighborhood Negative Selection( NNS) algorithm needs to traverse the whole self-samples and leads to large amount of calculation. At the same time there are phenomena about overlap rate higher at matching stage. To address this issue,making in-depth study on NNS and clustering method,it proposes a novel neighborhood detector algorithm. The self-samples are mapped to neighborhood space and they are used to clustering. Random detectors are trained and become mature neighborhood detectors. The algorithm generates detectors by shortening the time and solving the high overlap problem. In KDD CUP 1999 data sets to evaluate the results of simulation show that,the algorithm can solve the above mentioned problems effectively and increase the detection efficiency.

关 键 词:入侵检测 免疫 邻域 聚类 检测器 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象