Dembowski-Ostrom Polynomials from Reversed Dickson Polynomials  

Dembowski-Ostrom Polynomials from Reversed Dickson Polynomials

在线阅读下载全文

作  者:ZHANG Xiaoming WU Baofeng LIU Zhuojun 

机构地区:[1]Key Laboratory of Mathematics Mechanization,Academy of Mathematics and Systems Science,Chinese Academy of Sciences, Beijing 100190, China [2]State Key Laboratory of Information Security,Institute of Information Engineering,Chinese Academy of Sciences, Beijing 100093, China

出  处:《Journal of Systems Science & Complexity》2016年第1期259-271,共13页系统科学与复杂性学报(英文版)

基  金:supported by the National Basic Research Program of China under Grant No.2011CB302400

摘  要:This paper gives a full classification of Dembowski-Ostrom polynomials derived from the compositions of reversed Dickson polynomials and monomials over finite fields of characteristic 2.The authors also classify almost perfect nonlinear functions among all such Dembowski-Ostrom polynomials based on a general result describing when the composition of an arbitrary linearized polynomial and a monomial of the form x^(2+2^α) is almost perfect nonlinear.It turns out that almost perfect nonlinear functions derived from reversed Dickson polynomials are all extended affine equivalent to the well-known Gold functions.

关 键 词:Almost perfect nonlinear function Dembowski-Ostrom polynomial linearized polynomial reversed Dickson polynomial 

分 类 号:O174.14[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象