检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院强磁场科学中心,合肥230031 [2]中国科学技术大学微尺度国家实验室,合肥230026 [3]东北大学物理学院,沈阳110819
出 处:《物理学进展》2016年第1期1-20,共20页Progress In Physics
基 金:中国科学院青年促进会专项基金的资助(No.2015267)
摘 要:纳米磁性材料由于其特殊的磁学性能,近年来,在许多领域受到了广泛的应用。在基础理论研究中,人们提出了各种描述纳米磁性材料的理论;另一方面,计算机计算能力以及实验手段的提高,使得应用计算机进行材料设计以及探测单个纳米颗粒的磁学特性成为可能。这使得人们对纳米磁性材料的理解更加深入。本篇论文介绍了磁性纳米颗粒的磁化反转机制的基本理论与实验研究的最新进展。本文首先从磁性材料中基本的相互作用入手说明这些相互作用在纳米尺度下的表现形式,随后详细介绍了基于Stoner-Wohlfarth模型计算机模拟方法,最后简单介绍两种可以用来研究单个纳米颗粒磁化反转实验手段以及相关的实验结果。Magnetic nanoparticles have been applied in many fields due to their novel properties. From the viewpoints of fundamental research, lots of theories have been proposed. On the other hand, with the development of experimental measurements and numerical simulations, it is possible to investigate the magnetic properties of single magnetic nanoparticle and then design the desired assemble. In this review, we introduce the magnetization reversal of magnetic nanoparticles, focusing on the related theories and latest experimental techniques. We first introduce the basic magnetic interaction at the nano-scale, which is followed by introducing the numerical simulation of magnetization reversal of magnetic nanoparticles based on Stoner-Wohlfarth model. Finally, two- typical techniques, detecting the magnetization reversal of magnetic nanoparticles, are overviewed.
关 键 词:磁性纳米颗粒 磁化反转 Stoner-Wohlfarth模型 MONTE Carlo模拟:磁共振力显微镜 电子全息技术
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.147.87